

Kooragang Island Billboards

Geotechnical and contamination report

Ooh!Media Pty Limited

9 March 2022

→ The Power of Commitment

GHD Pty Ltd | ABN 39 008 488 373

GHD Tower, Level 3, 24 Honeysuckle Drive
Newcastle, New South Wales 2300, Australia
T +61 2 4979 9999 | F +61 2 9475 0725 | E ntlmail@ghd.com | ghd.com

Document status

Status	Revision	Author	Author Reviewer Signature		Approved for issue			
Code					Name	Signature	Date	
S4	0	J Sylvester / L Parkinson	S Mackenzie / A Monkley	L	A Monkley	he	09/03/2022	

© GHD 2022

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

Introd	duction	1
1.1	Limitations	2
Koora	agang Island background	3
Methe	odology	4
3.1	Geotechnical investigation	4
3.2	Contamination investigation	5
Inves	tigation results	6
4.1	Subsurface conditions	6
4.2	Laboratory test results	6
Discu	ussion and recommendations	10
5.1	Geotechnical model	10
5.2	Footing selection	10
5.3	Geotechnical design parameters	10
5.4	Footing inspection and testing	11
5.5	Earthquake loads	11
5.6	Exposure classification	11
5.7	Acid sulphate soils	12
5.8	Contamination	12
	1.1 Koor Meth 3.1 3.2 Inves 4.1 4.2 Discu 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Kooragang Island backgroundMethodogy3.1Geotechnical investigation3.2Contamination investigation3.2Contamination investigationInvestigation results4.1Subsurface conditions4.2Laboratory test resultsDiscustion and recommendations5.1Geotechnical model5.2Footing selection5.3Geotechnical design parameters5.4Footing inspection and testing5.5Earthquake loads5.6Exposure classification5.7Acid sulphate soils

Table index

Table 3.1	Geotechnical laboratory testing schedule	4
Table 4.1	Atterberg limit, Emerson and particle size distribution laboratory test results	6
Table 4.2	Soil aggressivity laboratory test results	7
Table 4.3	Action criteria for ASS treatment	8
Table 5.1	Geotechnical model	10
Table 5.2	Preliminary geotechnical parameters for CFA piles	11
Table 5.3	Exposure classifications	11

Figure index

Figure 1.1	Site locations at Teal Street (one) and Cormorant Road (two)	1
Figure 2.1	Recent (2020) and historic (1958) aerial image, NSW Government	3

Appendices

- Appendix A General Notes and Standard Sheets
- Appendix B Survey plans
- Appendix C Borehole logs
- Appendix D Geotechnical laboratory test results
- Appendix E Contamination laboratory result summary tables

1. Introduction

This report presents the results of a geotechnical and contamination investigation for two proposed billboards on Kooragang Island for Ooh!Media. The billboards are proposed on land owned by the Port of Newcastle (PoN). One billboard is it to be located along the northern side of Teal Street and the other along Cormorant Road, as shown in Figure 1.1.

Figure 1.1 Site locations at Teal Street (one) and Cormorant Road (two)

Geotechnical and contamination assessment is required to inform detailed design and construction of the billboards. We understand each billboard will comprise two signs, each around 8.5 m in length and up to 8 m in height above the existing ground surface.

This report present the factual results of the investigation along with commentary relating to:

- Subsurface conditions
- Suitable footing systems and founding conditions
- Geotechnical design parameters for deep (piled) foundations
- Soil aggressivity with reference to Australian Standard AS 2159-2009
- Presence (or otherwise) of potential or actual acid sulphate soils and recommendation for further assessment
- Potential risk of contamination to human health and/or the environment and recommendations for management and disposal of soils

This report should be read in conjunction with the General Notes in Appendix A.

1.1 Limitations

This report has been prepared by GHD for Ooh!Media Pty Limited and may only be used and relied on by Ooh!Media Pty Limited for the purpose agreed between GHD and Ooh!Media Pty Limited as set out in this report.

GHD otherwise disclaims responsibility to any person other than Ooh!Media Pty Limited arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on:

- Conditions encountered and information reviewed at the date of preparation of the report. GHD has no
 responsibility or obligation to update this report to account for events or changes occurring subsequent to the
 date that the report was prepared.
- Assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.
- Information obtained from, and testing undertaken at or in connection with, specific sample points.
 Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

2. Kooragang Island background

Kooragang's industrial history includes land reclamation commencing in the 1950s, shown in Figure 2.1.

Subsurface conditions at Kooragang typically comprise fill comprising dredged sand with gravel to cobble size waste material (e.g. slag, timber, ballast) overlying natural soils underlying the fill and dredged sand, or at the surface where filling has not occurred, comprise soils of estuarine and marine depositional origin, including soft clays and loose sand, with sand density increasing with depth. Sedimentary bedrock levels vary between 10 m and greater than 50 m.

The proposed billboard locations are mapped as disturbed terrain¹² with respect to acid sulfate soils³. The harbour, where dredged fill material was sourced, is mapped as a low probability of acid sulfate soils and undisturbed estuarine areas around the island are mapped as having a high probability of occurrence of acid sulfate soils. As such, there is potential at Kooragang for both fill and natural soils to include actual or potential acid sulfate soils.

Figure 2.1 Recent (2020) and historic (1958) aerial image, NSW Government

¹ Matthei L.E., 1995, Soil Landscapes of the Newcastle 1:100,000 Sheet map and report, NSW Department of Land and Water Conservation, Sydney, via eSpade

² Colquhoun G.P., Hughes K.S., Deyssing L., Ballard J.C., Folkes C.B, Phillips G., Troedson A.L. & Fitzherbert J.A. 2021. New South Wales Seamless Geology dataset, version 2.1 [Digital Dataset]. Geological Survey of New South Wales, Department of Regional NSW, Maitland via MinView

³ Naylor, SD, Chapman, GA, Atkinson, G, Murphy CL, Tulau MJ, Flewin TC, Milford HB, Morand DT, 1998, Guidelines for the Use of Acid Sulfate Soil Risk Maps, 2nd ed., Department of Land and Water Conservation, Sydney via eSpade

3. Methodology

3.1 Geotechnical investigation

Investigation for the proposed billboards was undertaken on 16 December 2021 and comprised drilling of two boreholes. Borehole BH01 at Cormorant Road was drilled to 9.9 m and BH02 at Teal Street was drilled to 9.8 m depth. Borehole locations are shown in the survey in Appendix B and the below photos.

Photo 1 Teal Street borehole (BH02)

Cormorant Road borehole (BH01)

Boreholes were drilled with a truck mounted geotechnical drilling rig using solid flight auger and rotary washboring techniques to the limit of investigation. Standard Penetrometer Tests (SPTs) were conducted at 1.5 m intervals to provide an assessment of soil strength and correlation with geotechnical parameters. SPT samples were retained for laboratory analysis and separate contamination samples were collected for laboratory testing.

Photo 2

Subsurface investigation was supervised on a full-time basis by an experienced Engineering Geologist responsible for locating the boreholes, logging encountered strata, directing in-situ testing and collecting representative samples. The logging was carried out in accordance with Australian Standard AS 1726-2017.

The borehole logs are provided in Appendix C and should be read in conjunction with the Standard Sheets provided in Appendix A.

Geotechnical soil samples collected during the investigation were transported to GHD's NATA accredited geotechnical laboratory or a subcontracted NATA registered environmental laboratory.

A summary of the geotechnical tests completed is provided below.

Laboratory Test	Quantity
Atterberg limits	4
Soil aggressivity suite (Chloride, Sulfate, pH and Electrical conductivity)	2
Field screen ASS (pH, pH _{FOX} , Ahern 2004)	10
ASS Chromium suite	2

Table 3.1 Geotechnical laboratory testing schedule

3.2 Contamination investigation

Soil sampling was undertaken during the geotechnical subsurface investigations as discussed in Section 3.1. Investigation works were undertaken under the guidance of a suitably qualified environmental consultant and were completed in general accordance with guidelines developed or endorsed by NSW EPA.

Soil samples were collected from surface (0-0.2 m) and at 0.3-0.5 m and then every metre thereafter to the final depth of the borehole. Samples were collected directly from the sides of the borehole or the soil sod within the auger to minimise cross contamination. All re-usable sampling equipment was decontaminated between each sampling point using Neutracon solution and rinsing with tap water. New disposable Nitrile gloves were used when collecting samples.

Collected soil samples were immediately transferred to sample containers of appropriate composition, which were pre-treated in a manner appropriate for the laboratory analysis. All sample containers were clearly labelled with a sample number, sample location, sample depth and sample date. The sample containers were transferred to a chilled cooler for sample preservation prior to and during shipment to the testing laboratory.

The samples were transported under Chain of Custody (CoC) conditions to an independent and National Association of Testing Authorities (NATA) certified laboratory. Seven samples were analysed for the following potential contaminants of concern - heavy metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn), total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN), polycyclic aromatic hydrocarbons (PAH), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and asbestos.

A single Quality Assurance / Quality Control (QA/QC) intralaboratory (field) duplicate sample pair (BH02 0.4-0.5/ DU02) were collected during the investigations. No rinsate samples, trip blanks or trip spikes were collected.

4. Investigation results

4.1 Subsurface conditions

In general terms, subsurface conditions encountered during the investigation comprised fill overlying estuarine sand and clay to the limit of investigation. The more pertinent aspects of the units encountered are summarised below, with reference to existing ground surface levels.

Cormorant Road

Relevant test location: BH01

FILL encountered to 2.8 m depth comprising an asphalt surface over sand with clay and trace fine gravel; overlying

ESTUARINE SAND and CLAY comprising:

- Upper SAND, fine to coarse grained encountered as medium dense to 3.2 m.
- CLAY, high plasticity dark grey clay with inclusions of sand and shells encountered as firm to 4.0 m.
- Lower SAND, fine to coarse grained encountered as loose to 6.5 m and dense to very dense to the limit of investigation. SPT refusal was encountered from 8.5 m to the limit of investigation.

Groundwater was encountered at 2.2 m depth.

Teal Street

Relevant test location: BH02

FILL encountered to 1.7 m depth comprising sand with clay and trace of fine gravel, shells and rootlet; overlying

ESTUARINE SAND and CLAY comprising:

- Upper SAND, fine to coarse grained sand encountered as medium dense to 1.8 m.
- CLAY, high plasticity dark grey clay with inclusions of sand and shells encountered as firm to 2.5 m.
- Lower SAND, fine to coarse grained sand encountered as very loose to loose to 5.5 m and medium dense to the limit of investigation. SPT refusal was encountered at the limit of investigation.

Groundwater was encountered at 1.6 m depth.

4.2 Laboratory test results

4.2.1 Geotechnical results

Geotechnical laboratory test results are summarised in Table 4.1 and Table 4.2, with test report sheets provided in Appendix D.

Sample ID	Soil Description	Atterberg Limits (%)			Particle size distribution (%)		
		LL	PL	PI	Clay / silt	Sand	Gravel
BH01 1.5-1.95 m	SAND	-	-	-	3	97	0
BH01 4.0-4.45 m	SAND	NA	NP	NP	-	-	-
BH01 6.5-6.95 m	SAND with silt	-	-	-	6	94	0
BH02 5.5-5.95 m	SAND	-	-	-	2	98	0
Note: Clay and silt prop LL = liquid limit NA = Not applica	•	= plasticity in		ed – i.e. perce	nt passing 75 µm sie	ve.	

 Table 4.1
 Atterberg limit, Emerson and particle size distribution laboratory test results

Table 4.2 Soil aggressivity laboratory test results

Sample ID	Soil Description	рН	Cl (mg/kg)	SO₄ (mg/kg)	EC (µS/cm)
BH01 1.5 -1.95 m	SAND	8.9	<10	<10	70
BH02 5.5-5.95 m	SAND	7.5	<10	600	330

4.2.2 Contamination results

4.2.2.1 Assessment criteria

This assessment was undertaken with reference to the relevant guidelines made or approved by the NSW EPA.

- NEPC (2013). National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999.
 National Environment Protection Council, as amended in May 2013
- NSW EPA (2020). Contaminated land guidelines: Consultants Reporting on Contaminated Land. New South Wales Environment Protection Authority, 2020
- NSW EPA (2014) Waste Classification Guidelines: Part 1 Classifying Waste

The main objective of the contamination assessment was to assess if soils present a risk to human health and the environment during construction activities. As the sites are to be used for commercial/industrial purposes, the following assessment criteria, which are sourced from Schedule B1 of the NEPM 1999 (Amendment 2013), have been considered:

- Human Health:
 - Health Investigation Level (HIL) Commercial/Industrial (HIL D)
 - Health Screening Levels (HSL) for Vapour Intrusion for 0 to <2 m sand soils (HSL D)
- Ecological:
 - Ecological Investigation Level (EILs) for commercial/industrial
 - Ecological Screening Levels (ESLs) for TRH, BTEX and benzo(a)pyrene fractions –commercial / industrial (both coarse and fine soil textures

The application of EILs is dependent on site specific soil characteristics including pH, cation exchange capacity (CEC) and clay content. As these soil characteristics have not been assessed to date, the following assumptions were made:

- Soils were assumed to have a low range CEC, as such, a CEC of 5 cmol_o/kg has been assumed for the selection of copper, nickel and zinc criteria.
- Soils across the site are assumed to be basic. Based on this assumption, a pH range of 7.5 has been selected for zinc and copper criteria.
- For selection of the Cr III criterion, a clay content of 5 % has been assumed. The selection of Cr III criterion is not CEC or pH dependent.

4.2.2.2 Waste classification

The chemical concentrations pertaining to soil samples collected from designated stockpiles will be compared to the criteria outlined in Table 1 of the NSW EPA (2014) *Waste Classification Guidelines: Part 1 Classifying Waste*. The guidelines provide relevant criteria for assessing and classifying solid (non-liquid) wastes. The classification process for solid wastes also focuses on the potential for the waste to release chemical contaminants into the environment through contact with liquids (leachates).

The method used to chemically assess waste is the specific contaminant concentration (SCC) test. Where the SCC value exceeds the specified contaminant threshold (CT) value, further assessment using toxicity characteristic leaching procedure (TCLP) may be used to determine the total concentration of each contaminant in the waste sample and its leachability. The guidelines set different maximum levels for the CT of each contaminant and its leachability, in order for waste to be classified as either general solid waste or restricted solid waste. If the level exceeds the restricted solid waste criteria, the material is classified as hazardous waste.

4.2.2.3 Results

Laboratory reports and result tables are presented in Appendix D and Appendix E.

Health criteria

Concentrations of contaminants were either below the laboratory limit of reporting (LOR) or the nominated health assessment criteria (HIL D/HSL D) for all samples analysed.

Based on the results there is a low potential for soils to be a significant risk to the health of workers/users of the Site.

Ecological criteria

Concentrations of contaminants were either below the laboratory limit of reporting (LOR) or the nominated assessment criteria (EILs/ESLs)

Based on the results there is a low potential for soils to be a significant risk to the surrounding environment.

Waste Classification

All results were reported below the NSW EPA (2014) General Solid Waste CT1 (No Leaching).

Based on the results the soils would be classified as general solid waste. However, given PASS has been detected in soil samples, soils would be classified as PASS and may need treatment prior to disposal.

4.2.3 Acid sulfate soils results

4.2.3.1 Assessment criteria

The ASSMAC (1998) action criteria for treatment of ASS have been adopted and used to assess the net acidity in each soil sample. The criteria are presented in Table 4.3.

When analytical results exceed the action criteria, a treatment regime and management plan for the materials is triggered. For disturbances of less than 1000 tonnes the action criteria vary according to the texture of the material, however if more than 1000 tonnes is to be disturbed all action criteria are the same: 0.03 for S% and 18 mol H+/tonne for acid. As spoil generated from this works is estimated to be less than 1000 tonnes these action criteria have been selected.

Soil texture	Clay	< 1000 tonnes disturbed		> 1000 tonnes disturbed	
	content %	Sulfur Content %	Acid mol/Tonne	Sulfur content %	Acid mol/Tonne
Coarse (sands-gravels)	≤ 5	0.03	18		
Medium (sandy loam-light clay)	5 - 40	0.06	36	0.03	18
Fine (medium to heavy clays, silty clays)	≥ 40	0.10	62		

 Table 4.3
 Action criteria for ASS treatment

Note: Bold indicates selected criteria

4.2.3.2 Results

Results from the ASS field screening are presented in Appendix E. In summary:

- Values for pH_F were neutral to alkaline ranging from 6.8 to 9.2
- Values for pH_{Fox} were acidic to alkaline ranging from 2.3 to 8.6
- The ΔpH, defined as pH_F minus pH_{Fox} , ranged from 0.1 to 6.8

Chromium Reducible Sulfur (CRS) ASS suite analysis was undertaken on the four samples which reported the highest change in pH. With results as follows:

- ASS Acidity Trail results were reported below the detection limit
- ASS Potential Acidity results ranged from 46 340 mole H+/t and 0.074 -0.55 %S

4.2.4 Quality assurance and quality control

Laboratory quality assurance and quality control

The results reported indicate that the laboratory was achieving levels of performance within their recommended control limits during the period when the samples from this program were analysed. Based on a review of the laboratory QA/QC data, it is considered that the analytical results are reasonably representative of conditions at the time of the investigation.

5. Discussion and recommendations

5.1 Geotechnical model

A geotechnical model is an idealisation based on geotechnical interpretation. An idealised geotechnical model for this investigation is summarised in Table 5.1 below.

Description	Unit	Consistency /	Depth encountered (m)		
		Relative Density	Cormorant Road	Teal Street	
FILL	Unit 1 FILL	-	0 to 2.8 m	0 to 1.7 m	
Upper SAND	Unit 2b Estuarine SAND	Medium dense	2.8 to 3.2 m	1.7 to 1.8 m	
CLAY	Unit 3 Estuarine CLAY	Firm	3.2 to 4.0 m	1.8 to 2.5 m	
Lower SAND	Unit 2a Estuarine SAND	Very loose to loose	4.0 to 6.5 m	2.5 to 5.5 m	
	Unit 2b Estuarine SAND	Medium dense	-	5.5 to >10 m	
	Unit 2c Estuarine SAND	Dense to very dense	6.5 to >10 m	-	
		Groundwater	2.2 m	1.6 m	

5.2 Footing selection

Due to the deep fill and loose estuarine soils, shallow footings are not recommended. Deep footings (i.e. piles) founding within the medium dense (Unit 2b) or dense to very dense (Unit 2c) sand are recommended. As the billboard will be subject to lateral loading, the choice of pile type and size needs to also consider lateral deflection tolerance.

Due to the shallow groundwater level, challenges may be encountered with construction of conventional bored piles associated with caving of the sand soils into the excavation and management of groundwater. Furthermore, the presence of potential acid sulfate soils makes displacement piles attractive as opposed to bored piles that generate spoil.

Given the above, and subject to confirmation by detailed structural and geotechnical foundation design, driven displacement piles (steel, timber or precast concrete) or continuous flight auger (CFA) piles (which do generate some spoil) are recommended.

5.3 Geotechnical design parameters

Piles may be founded in the medium dense or better sand units (Unit 2b and 2c) a minimum three pile diameters into the unit.

For driven piles, termination depths could be determined using dynamic pile driving assessment with signal matching (wave equation analysis).

CFA piles (non-displacement) should be designed using static pile design methods (such as Poulos and Davis, 1980) and the preliminary geotechnical design parameters provided in Table 5.2.

Typical elastic moduli have been provided to assist with lateral design of piles if required.

Table 5.2 Preliminary geotechnical parameters for CFA piles

Unit		Density Index (%)	Bulk Unit Weight (kN/m³)	Apparent Friction φ (°)	Undrained shear strength Su (kPa)	Elastic modulus - static E _s (MPa)
1	Fill	35-80	18-20	27-35	-	10 - 30
2a	Estuarine SAND – loose	15-35	14-16	25-29	-	5 - 10
2b	Estuarine SAND – medium dense	35-50	16-17	30-33	-	12 - 18
2c	Estuarine SAND – dense to very dense	65-85	18-19	35-37	-	25 - 40
3	Clay – firm	-	16-17	-	25 – 50	10 - 25

Piles should be designed and installed in accordance with Australian Standard AS 2159-2009 *Piling – Design and Installation.* The basic geotechnical reduction factor (ϕ_{gb}), of 0.45 (for a low redundancy system) should be applied to the ultimate values and appropriate checks on pile settlement, including consideration of uplift, as appropriate. It is expected that pile settlement (serviceability) will limit allowable pile capacity rather than the ultimate geotechnical pile capacity.

5.4 Footing inspection and testing

Geotechnical design parameters and conditions used as the basis of this assessment should be confirmed by geotechnical inspection during construction. If subsurface conditions encountered during construction differ from those provided in this report, further geotechnical advice should be sought.

Inspection of footings and foundations should be undertaken by an experienced geotechnical engineer or engineering geologist to verify that the recommended foundation material has been reached and to check initial assumptions relating to foundation conditions, cleanliness, roughness and possible variations that may occur across the site.

5.5 Earthquake loads

Based on Australian Standard AS 1170.4-2007 *Earthquake Design Actions*, an acceleration coefficient of 0.11 is considered applicable for the Newcastle area.

On the basis of the typical subsurface profiles discussed above, the site sub-soil class of C_e – Shallow soil site has been assessed in accordance with AS 1170.4-2007.

5.6 Exposure classification

The soil aggression and oxidised pH (pH_{FOX}) test results above have been assessed in terms of Tables 6.4.2(C) and 6.5.2(C) of Australian Standard AS 2159-2009 *Piling – Design and Installation*. Table 5.3 below presents the soil condition and classification for each sample tested.

Unit	Sample/s tested	Initial or	Classification (as per AS2159)			
		oxidised pH	Soil Condition	Concrete	Steel	
1 FILL	BH01 0.9-1 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive	
1 FILL	BH01 1.5 -1.95 m	Initial	Non-cohesive	Non-aggressive	Non-aggressive	
1 FILL	BH01 2.5 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive	
3 Estuarine CLAY	BH01 3.5 m	Oxidised	Cohesive	Mild	Non-aggressive	
2a Estuarine SAND	BH01 5 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive	
2a Estuarine SAND	BH01 6.5 m	Oxidised	Non-cohesive	Very severe	Severe	
2c Estuarine SAND	BH01 8.5 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive	

Table 5.3 Exposure classifications

Unit	Sample/s tested	Initial or	Classification (as per AS2159)			
		oxidised pH	Soil Condition	Concrete	Steel	
1 FILL	BH02 1 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive	
3 Estuarine CLAY	BH02 2 m	Oxidised	Cohesive	Mild	Non-aggressive	
2a Estuarine SAND	BH02 4 m	Oxidised	Non-cohesive	Very severe	Severe	
2b Estuarine SAND	BH02 5.5-5.95 m	Initial	Non-cohesive	Non-aggressive	Non-aggressive	
2b Estuarine SAND	BH02 6.5 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive	
2b Estuarine SAND	BH02 8.5 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive	
2b Estuarine SAND	BH02 9.5 m	Oxidised	Non-cohesive	Non-aggressive	Non-aggressive	

Oxidised pH values for two of the above samples (BH01 6.5 m and BH02 4 m) resulted in classifications more than mild. Initial pH values of 6.8 and 9.1 were oxidised with pH_{FOX} values below 3. The initial pH values would result in classifications of non-aggressive to concrete and steel. It is anticipated that these soils will remain below the water table and therefore will not become oxidised.

Therefore, recommended exposure classifications are as follows:

- Unit 1 FILL, non-aggressive to concrete and steel
- Unit 2 Estuarine SAND, non-aggressive to concrete and steel
- Unit 3 Estuarine CLAY, mild to concrete and non-aggressive to steel

5.7 Acid sulphate soils

The results of the CRS analysis indicated that acidity in the samples analysed was primarily present as unoxidized pyrite (i.e. potential acid sulfate soils (PASS)). The net acidity in all four samples exceeded the National ASS Guidance (Sullivan et al., 2018) and ASSMAC (1998) action criteria (18 mol H+/tonne equivalent 0.03 %S) for sands. Although acid neutralising capacity (ANC) was detected in sufficient quantities to neutralise the potential acidity generated from two of the samples (BH01 3.5m and BH02 2m), it cannot be confirmed if this ANC would effectively neutralise the acidity generated under conditions likely to be encountered during construction works.

Based on the results there is PASS present within the area that would require liming to neutralise the acidity generated from the disturbance of PASS. Current data suggests liming between 3.5 and 26 kg CaCO3/t (based on Net Acidity excluding ANC values) would be required. An Acid Sulfate Soil Management Plan (ASSMP) will be required to direct the storage, handling and treatment of any excavated soil material.

5.8 Contamination

All results were reported below the health and ecological assessment criteria for commercial/industrial land use. Based on this soils present a low risk to human health and the environment under a commercial/industrial land use. During construction it is recommended that any soils that are excavated are stockpiled away from sensitive receptors such as waterways.

Soils were reported below the NSW EPA (2014) General Solid CT1 and would be classified as General Solid Waste – PASS. It is noted that this classification is preliminary only and further testing would need to be completed prior to disposal of soils off site. It is also noted that given that the soils contain PASS, treatment may need to be done prior to disposal.

6. References

ASSMAC (1998) NSW Acid Sulfate Soils Manual

Colquhoun G.P., Hughes K.S., Deyssing L., Ballard J.C., Folkes C.B, Phillips G., Troedson A.L. & Fitzherbert J.A. 2021. New South Wales Seamless Geology dataset, version 2.1 [Digital Dataset]. Geological Survey of New South Wales, Department of Regional NSW, Maitland via MinView

Matthei L.E., 1995, Soil Landscapes of the Newcastle 1:100,000 Sheet map and report, NSW Department of Land and Water Conservation, Sydney, via eSpade

Naylor, SD, Chapman, GA, Atkinson, G, Murphy CL, Tulau MJ, Flewin TC, Milford HB, Morand DT, 1998, Guidelines for the Use of Acid Sulfate Soil Risk Maps, 2nd ed., Department of Land and Water Conservation, Sydney via eSpade

NEPC (2013). National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999. National Environment Protection Council, as amended in May 2013

NSW EPA (2014). Waste Classification Guidelines, Part 1: Classifying Waste. November 2014

NSW EPA (2021). Guidelines for Consultants Reporting on Contaminated sites

Sullivan, L, Ward, N, Toppler, N and Lancaster, G 2018, National Acid Sulfate Soils guidance: National acid sulfate soils sampling and identification methods manual, Department of Agriculture and Water Resources, Canberra ACT. CC BY 4.0

Appendices

Appendix A General Notes and Standard Sheets

GENERAL NOTES

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

The report contains the results of a geotechnical investigation or study conducted for a specific purpose and client. The results may not be used or relied on by other parties, or used for other purposes, as they may contain neither adequate nor appropriate information. In particular, the investigation does not cover contamination issues unless specifically required to do so by the client.

To the maximum extent permitted by law, all implied warranties and conditions in relation to the services provided by GHD and the report are excluded unless they are expressly stated to apply in the report.

TEST HOLE LOGGING

The information on the test hole logs (boreholes, test pits, exposures etc.) is based on a visual and tactile assessment, except at the discrete locations where test information is available (field and/or laboratory results). The test hole logs include both factual data and inferred information. Moreover, the location of test holes should be considered approximate, unless noted otherwise (refer report). Reference should also be made to the relevant standard sheets for the explanation of logging procedures (Soil and Rock Descriptions, Core Log Sheet Notes etc.).

GROUNDWATER

Unless otherwise indicated, the water depths presented on the test hole logs are the depths of free water or seepage in the test hole recorded at the given time of measuring. The actual groundwater depth may differ from this recorded depth depending on material permeabilities (i.e. depending on response time of the measuring instrument). Further, variations of this depth could occur with time due to such effects as seasonal, environmental and tidal fluctuations or construction activities such as a change is ground surface level. Confirmation of groundwater levels, phreatic surfaces or piezometric pressures can only be made by appropriate surveys, instrumentation techniques and monitoring programmes.

INTERPRETATION OF RESULTS

The discussion or recommendations contained within this report normally are based on a site evaluation from discrete test hole data, often with only approximate locations (e.g. GPS). Generalised, idealised or inferred subsurface conditions (including any geotechnical cross-sections) have been assumed or prepared by interpolation and/or extrapolation of these data. As such these conditions are an interpretation and must be considered as a guide only.

CHANGE IN CONDITIONS

Local variations or anomalies in ground conditions do occur in the natural environment, particularly between discrete test hole locations or available observation sites. Additionally, certain design or construction procedures may have been assumed in assessing the soil-structure interaction behaviour of the site. Furthermore, conditions may change at the site from those encountered at the time of the geotechnical investigation through construction activities and constantly changing natural processes.

Any change in design, in construction methods, or in ground conditions as noted during construction, from those assumed or reported should be referred to GHD for appropriate assessment and comment.

GEOTECHNICAL VERIFICATION

Verification of the geotechnical assumptions and/or model is an integral part of the design process - investigation, construction verification, and performance monitoring. Variability is a feature of the natural environment and, in many instances, verification of soil or rock quality, or foundation levels, is required. There may be a requirement to extend foundation depths, to modify a foundation system and/or to conduct monitoring as a result of this natural variability. Allowance for verification by appropriate geotechnical personnel must be recognised and programmed for construction.

FOUNDATIONS

Where referred to in the report, the soil or rock quality, or the recommended depth of any foundation (piles, caissons, footings etc.) is an engineering estimate. The estimate is influenced, and perhaps limited, by the fieldwork method and testing carried out in connection with the site investigation, and other pertinent information as has been made available. The material quality and/or foundation depth remains, however, an estimate and therefore liable to variation. Foundation drawings, designs and specifications should provide for variations in the final depth, depending upon the ground conditions at each point of support, and allow for geotechnical verification.

REPRODUCTION OF REPORTS

Where it is desired to reproduce the information contained in our geotechnical report, or other technical information, for the inclusion in contract documents or engineering specification of the subject development, such reproductions must include at least all of the relevant test hole and test data, together with the appropriate Standard Description sheets and remarks made in the written report of a factual or descriptive nature.

Reports are the subject of copyright and shall not be reproduced either totally or in part without the prior written consent of GHD. GHD expressly disclaims responsibility to any person other than the client arising from or in connection with this report.

GLOSSARY OF SYMBOLS

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

This standard sheet should be read in conjunction with all test hole log sheets and any idealised geological sections prepared for the investigation report.

	GENERAL					
Symbol	Description	Symbol	Description			
D	Disturbed Sample	R	Rising Head Permeability Test			
В	Bulk Sample	F	Falling Head Permeability Test			
U(50)	Undisturbed Sampled (suffixed by sample size or tube diameter in mm if applicable)	PBT	Plate Bearing Test			
CS	Core Sample (suffixed by diameter in mm))	Water Inflow (make)			
ES	Soil sample for environmental sampling		Water Outflow (loss)			
PID	Photoionisation Detector	$\mathbf{\nabla}$	Temporary Water Level			
SPT	Standard Penetration Test (with blows per 0.15m)	V	Final Water Level			
Ν	SPT Value	•	Point Load Test (axial)			
HB/HW	SPT Hammer Bouncing/Hammer Weight	0	Point Load Test (diametric)			
PP/HP	Pocket/Hand Penetrometer (suffixed by value kPa)	PL	Point Load (kPa)			
РК	Packer Test (kPa)	IMP	Impression Device Test			
PZ	Piezometer Installation	РМ	Pressuremeter Test			
SV/VS	Shear Vane Test (suffixed by value in kPa)					

			SOIL S	SYMBOLS					
Main C	omponents		Minor (Components					
	SAND	FILL		sandy	x x x x x	vege	tation, root	S	
000	GRAVEL	SILT	0000	gravelly		silty			
	CLAY	TOPSOIL		clayey			s are genera onstituents, e		CLAY
			ROCK	SYMBOLS					
Sedime	entary					Igneous			
	SANDSTONE	SILTSTONE		CONGLOME	RATE	+ + + + + +	GRANITI C ROCK	==	IGNEOUS
	CLAYSTONE	SHALE		COAL		\bigotimes	BASALT IC ROCK		DYKE

Note: Additional rock symbols may be allocated for a particular project

NATURAL DEFECTS (Coding)

Defect	Туре		Orientatio	n							
Jt	Joint		For vertica	For vertical non-oriented core "Dip" angle (eg. 5°) measured relative to horizontal.							
Pt	Parting		For incline	For inclined non-oriented core "Angle" measured relative to core axis.							
SS	Sheared Su	urface	For incline	d orien	ted core "I	Dip" angle	and "Dip Direction" an	gle (eg.	45°/225° mag.).		
WSm	Weathered	Seam	Orientatio	n (con	't)	Rough	ness	Coati	ng		
SSm	Sheared Se	eam	VT	Verti	cal	Pol	Polished	Cn	Clean		
CSm	Crushed Se	eam	HZ or 0°	Horiz	ontal	So	Smooth	Sn	Stained		
ISm	Infilled Sear	m	d / °	Degr	ees	Rf	Rough	Ve	Veneer		
SZ	Sheared Zo	one				VR	Very Rough	Со	Coating		
VN	Vein					Slk	Slickensided				
Shape						Infilling	g / Common Materials				
Pln	Planar		St	Step	bed	CLAY	Clay	Mi	Micaceous		
Cu	Curved		Ir	Irreg	ular	Са	Calcite	Mn	Manganese		
Un	Undulating		Dis	Disco	ontinuous	X	Carbonaceous	Ру	Pyrite		
Others						Kt	Chlorite	Qz	Quartz		
OP	Open	CL	Closed	Ti	Tight	Fe	Iron Oxide	MU	Unidentified Mineral		

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

GENERAL

Samples extracted during the fieldwork stage of a site investigation may be "disturbed" or "undisturbed" (as generally indicated on the test hole logs) depending upon the nature and purpose of the sample as well as the method of extraction, transportation, extrusion and testing. This aspect should be taken into account when assessing test results, which must of necessity, reflect the effects of such disturbance.

All soil properties (as measured by laboratory testing) exhibit inherent variability and thus a certain statistical number of tests is required in order to predict an average property with any degree of confidence. The site variability of soil strata, future changes in moisture and other conditions and the discrete sampling positions must also be considered when assessing the representative nature of the laboratory programme.

Certain laboratory test results provide interpreted soil properties as derived by conventional mathematical procedures. The applicability of such properties to engineering design must be assessed with due regard to the site, sample condition, procedure and project in hand.

TESTING

Laboratory testing is normally carried out in accordance with Australian Standard AS 1289 as amended, or in NSW, Roads and Maritime Services (RMS) standards when specified. The routine Australian Standard tests are as follows: Moisture Content AS1289 2.1.1

	A01203 2.1.1	
Liquid Limit	AS1289 3.1.1	
Plastic Limit	AS1289 3.2.1	collectively known as Atterberg Limits
Plasticity Index	AS1289 3.3.1	
Linear Shrinkage	AS1289 3.4.1	
Particle Density	AS1289 3.5.1	
Particle Size Distribution	AS1289 3.6.1, 3.6.2 and 3.6.3	
Emerson Class Number	AS1289 3.8.1	
Percent Dispersion	AS1289 3.8.2	collectively, Dispersive Classification
Pinhole Dispersion Classification	AS1289 3.8.3	
Hole Erosion (HE)	GHD Method	
No Erosion Filter (NEF)	GHD Method	
Organic Matter	AS1289 4.1.1	
Sulphate Content	AS1289 4.2.1	
pH Value	AS1289 4.3.1	
Resistivity	AS1289 4.4.1	
Standard Compaction	AS1289 5.1.1	
Modified Compaction	AS1289 5.2.1	
Dry Density Ratio	AS1289 5.4.1	
Minimum Density	AS1289 5.5.1	
Density Index	AS1289 5.6.1	
California Bearing Ratio	AS1289 6.1.1 and 6.1.2	
Shear Box	AS1289 6.2.2	
Undrained Triaxial Shear	AS1289 6.4.1 and 6.4.2	
One Dimensional Consolidation	AS1289 6.6.1	
Permeability Testing	AS1289 6.7.1, 6.7.2 and 6.7.3	

Where tests are used which are not covered by appropriate standard procedures, details are given in the report.

LABORATORIES

Our Australian laboratories are NATA accredited to AS ISO / IEC17025 for the listed tests.

The oedometer, triaxial and shear box equipment are fully automated for continuous operation using computer controlled data acquisition, processing and plotting systems.

SOIL DESCRIPTION AND CLASSIFICATION

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

Soil is described in general accordance with <u>Australian Standard AS 1726-2017</u> (Geotechnical Site Investigations) in terms of visual and tactile properties, with potential refinement by laboratory testing. AS 1726 defines soil as particulate materials that occur in the ground and can be disaggregated or remoulded by hand in air or water without prior soaking. Classification of the soil is undertaken following description.

SOIL DESCRIPTION

The soil description includes a) Composition, b) Condition, c) Structure, d) Origin and e) Additional observations. 'FILL', 'TOPSOIL' or a 'MIXTURE OF SOIL AND COBBLES / BOULDERS' (with dominant fraction first) is denoted at the start of a soil description where applicable.

a) Soil Composition (soil name, colour, plasticity or particle characteristics, secondary and then minor components)

Soil Name: A soil is termed a *coarse grained soil* where the dry mass of sand and gravel particles exceeds <u>65%</u> of the total. Soils with more than <u>35%</u> fines (silt or clay particles) are termed *fine grained soils*. The soil name is made up of the primary soil component (in BLOCK letters), prefixed by applicable secondary component qualifiers. Minor components are applied as a qualifiers to the soil name (using the words 'with' or 'trace').

Particles are differentiated on the basis of size. 'Boulders' and 'cobbles' are outside the soil particle range, though their presence (and proportions) is noted. While individual particles may be designated as silt or clay based on grain size, fine grained soils are characterised as silt or clay based on tactile behaviour or Atterberg Limits, and not the relative composition of silt or clay sized particles.

Colour: The prominent colour is noted, followed by (spotted, mottled, streaked etc.) then secondary colours as applicable. Roughly equally proportioned colours are prefixed by (spotted, mottled, streaked etc.). Colour is described in its moist condition, though both wet and dry colours may also be provided if appropriate.

Plasticity: Fine grained soils are designated within standard ranges of plasticity based on tactile assessment or laboratory assessment of the Liquid Limit.

Particle Characteristics: The particle shape, particle distribution and particle size range within a coarse grained soil is described using standard terms. Particle composition may be described using rock or mineral names, with specific terms for carbonate soils.

Secondary and Minor Components: The primary soil is described and modified by secondary and minor components, with assessed ranges as tabulated.

Carbonate Soils: Carbonate content can be assessed by use of dilute '10%' HCl solution. Resulting clear sustained effervescence is interpreted as a *Carbonate soil* (approximately >50% carbonate), while weak or sporadic effervescence indicates *Calcareous soil* (< 50% carbonate). No effervescence is interpreted as a noncalcareous soil.

Organic and Peat Soils: Where identified, organic content is noted. *Organic soil* (2% to 25% organic matter) is usually identified by colour (usually dark grey/black) and odour (i.e. 'mouldy' or hydrogen sulphide odour). *Peat* (>25% organic matter) is identified by a spongy feel and fibrous texture. Peat soils' decomposition may be described as 'fibrous' (little / no decomposition), '*pseudo-fibrous'* (moderate decomposition) or '*amorphous'* (full decomposition).

Fraction	Compone	ents	Particle Size (mm)
0	BOULDER	S	> 200
Oversize	COBBLES		63 - 200
	GRAVEL	Coarse	19 - 63
		Medium	6.7 -19
Coarse grained		Fine	2.36 - 6.7
soil particles	SAND	Coarse	0.6 - 2.36
		Medium	0.21 - 0.6
		Fine	0.075 - 0.21
Fine grained soil	SILT		0.002 - 0.075
particles	CLAY		< 0.002

Plasticity Terms (Fine Grained Soils)		
Clay	Limit Range	
N/A	(Non Plastic)	
Low Plasticity	≤ 35%	
Medium Plasticity	> 35% and ≤ 50%	
High Plasticity	> 50%	
	Clay N/A Low Plasticity Medium Plasticity	

Particle Distribution Terms (Coarse Grained Soils)				
Well graded	good representation of all particle sizes			
Poorly graded	one or more intermediate sizes poorly represented			
Gap graded	one or more intermediate sizes absent			
Uniform	essentially of one size			

Particle Shape Terms (Coarse Grained Soils)			
Rounded	Sub-angular	Flaky or Platy	
Sub-rounded	Angular	Elongated	

Secondary and Minor Components for Coarse Grained Soils

Fines (%)	Modifier (as applicable)		Modifier (as applicable)
\leq 5	'trace silt / clay'	≤ 15	'trace sand / gravel'
> 5, ≤ 12	'with clay / silt'	> 15, ≤ 30	'with sand / gravel'
> 12	prefix 'silty / clayey'	> 30	prefix 'gravelly / sandy'

Secondary and Minor Components for Fine Grained Soils			
% Coarse	Modifier (as applicable)		
≤ 15	add <i>"trace sand / gravel"</i>		
> 15, ≤ 30	add <i>"with sand / gravel"</i>		
> 30	prefix soil <i>"sandy / gravelly"</i>		

SOIL DESCRIPTION AND CLASSIFICATION

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

b) Soil Condition (moisture, relative density or consistency)

Moisture: Fine grained soils are described relative to plastic or liquid limits, while coarse grained soils are assessed based on appearance and feel. The observation of seepage or free water is noted on the test hole logs.

Mois	ture -	Coarse Grained Soils	Moisture - Fine Graine	Moisture - Fine Grained Soils						
Term	Term Tactile Properties		Term		Tactile Properties					
Dry	('D')	Non-cohesive, free running	Moist, dry of plastic limit	('w < PL')	Hard and friable or powdery					
Maiat	(1)	Feels cool, darkened colour,	Moist, near plastic limit	('w≈PL')	Can be moulded					
Moist	(1/1)	tends to stick together	Moist, wet of plastic limit	('w > PL')	Weakened, free water forms on hands with handling					
Wet	('W')	Feels cool, darkened colour, tends to stick together, free	Wet, near liquid limit	('w≈LL')	Highly weakened, tends to flow when tapped					
	(••)	water forms when handling	Wet, wet of liquid limit	('w > LL')	Liquid consistency, soil flows					

Relative Density (Non Cohesive Soils): The Density Index is inherently difficult to assess by visual or tactile means, and is normally assessed by penetration testing (e.g. SPT, DCP, PSP or CPT) with published correlations. Assessment may be affected by moisture and *in situ* stress conditions. Density Index assessment may be refined by combination of *in situ* density testing and laboratory reference maximum and minimum density ranges.

Consistency (Cohesive Soils): May be assessed by direct measurement (shear vane, CPT etc.), or approximate tactile correlations. Cohesive soils include fine grained soils, and coarse grained soils with sufficient fine grained components to induce cohesive behaviour. A 'design shear strength' must consider the mode of testing, the *in situ* moisture content and potential for variations of moisture which may affect the shear strength.

Relative Dens	ity (No	n-Cohesive Soils)	Consistency (Cohesive Soils)							
Term and (Symbol)		Density Index (%)	Term and	(Symbol)	Tactile Properties	Undrained Shear Strength				
Very Loose	(VL)	≤ 15	Very Soft	(VS)	Extrudes between fingers when squeezed	< 12 kPa				
Loose	(L)	> 15 and ≤ 35	Soft	(S)	Can be moulded by light finger pressure	12 - 25 kPa				
Medium Dense	(MD)	> 35 and \leq 65	Firm	(F)	Can be moulded by strong finger pressure	25 - 50 kPa				
Dense	(D)	> 65 and ≤ 85	Stiff	(St)	Cannot be moulded by fingers	50 - 100 kPa				
Very Dense	(VD)	> 85	Very Stiff	(VSt)	Can be indented by thumb nail	100 - 200 kPa				
Consistency asse	essment	can be influenced by	Hard	(H)	Can be indented with difficulty by thumb nail	> 200 kPa				
moisture variation	٦.		Friable	(Fr)	Easily crumbled or broken into small pieces by hand	-				

c) Structure (zoning, defects, cementing)

Zoning: The <i>in situ</i> zoning is described using the terms be <i>'layer'</i> (a continuous zone across the exposed sample) <i>'lens'</i> (a discontinuous layer with lenticular shape)	low. <i>'Intermixed</i> ' may be used for an irregular arrangement. <i>'pocket</i> ' (an irregular inclusion of different material). <i>'interbedded</i> ' or <i>"interlaminated</i> ' (alternating soil types)
Defects: Described using terms below, with dimension orie <i>'parting'</i> (an open or closed surface or crack sub parallel to layering with little / no tensile strength - open or closed)	entation and spacing described where practical. <i>'softened zone'</i> (in clayey soils, usually adjacent to a defect with associated higher moisture content)
<i>'fissure'</i> (as per a parting, though not parallel or sub parallel to layering – may include desiccation cracks)	<i>'tube'</i> (tubular cavity, singly or one of a large number, often formed from root holes, animal burrows or tunnel erosion)
<i>'sheared seam'</i> (zone of sub parallel near planar closely spaced intersecting smooth or slickensided fissures dividing the mass into lenticular or wedge shaped blocks)	'tube cast' (an infilled tube – infill may vary from uncemented through to cemented or have rock properties)
<i>'sheared surface'</i> (a near planar, curved or undulating smooth, polished or slickensided surface, indicative of displacement)	<i>'infilled seam'</i> (sheet like soil body cutting through the soil mass, formed by infilling of open defects)
Cementation: Soils may be cemented by various substance gypsum), and the cementing agent shall be identified if practices of the statement of the second statement of the se	es (e.g. iron oxides and hydroxides, silica, calcium carbonate, ctical. Cemented soils are described as:

weakly cemented easily disaggregated by hand in air or water

'moderately cemented' effort required to disaggregate the soil by hand in air or water

Materials extending beyond '*moderately cemented*' are encompassed within the rock strength range. Where consistent cementation throughout a soil mass is identified as a duricrust, it is described in accordance with duricrust rock descriptors. Where alternate descriptors of cementation development are applied for consistency with regional practices or geology, or client requirements, these are outlined separately.

SOIL DESCRIPTION AND CLASSIFICATION

GHD

Specialist Services in Geotechnical Engineering, Geology, Field/Laboratory Testing and Hydrogeology www.ghd.com/Geotechnical

d) Origin

An interpretation is provided based on observations of landform, geology and fabric, and may further include assignment of a stratigraphic unit. The use of terms 'possibly' or 'probably' indicates a higher degree of uncertainty regarding the assessed origin or stratigraphic unit. Typical origin descriptors include:

-	
Residual	Formed directly from in situ weathering with no visible structure or fabric of the parent soil or rock.
Extremely weathered	Formed directly from in situ weathering, with remnant and/or fabric from the parent rock.
Alluvial	Deposited by streams and rivers (may be applied more generically as transported by water).
Estuarine	Deposited in coastal estuaries, including sediments from inflowing rivers, streams, and tidal currents.
Marine	Deposited in a marine environment.
Lacustrine	Deposited in freshwater lakes.
Aeolian	Transported by wind.
Colluvial and Slopewash	Soil and rock debris transported down slopes by gravity (with or without assistance of water). Colluvium is typically applied to thicker / localised deposits, and slopewash for thinner / widespread deposits.
TOPSOIL	Surficial soil, typically with high levels of organic material. Topsoils buried by other transported soils are termed <i>'remnant topsoil'</i> . Tree roots within otherwise unaltered soil does not characterise topsoil.
FILL	Any material which has been placed by anthropogenic processes (i.e. human activity).

e) Additional Observations

Additional observations may be included to supplement the soil description. Additional observations may consist of notations relating to soil characteristics (odour, contamination, colour changes with time), inferred geology (with delineation of soil horizons or geological time scale) or notes on sampling and testing application (including the reliability, recovery, representativeness, or condition of samples or test conditions and limitations). If the material is assessed to be not representative, terms such as 'poor recovery', 'non-intact', 'recovered as' or 'probably' are applied.

SOIL CLASSIFICATION

Classification allocates the material within distinct soil groups assigned a two character Group Symbol:

Coarse Grained (sand and gravel:		il coarser than 0.075 mm)	Fine Grained Soils (silt and clay: more than <u>35%</u> of soil finer than 0.075 mm)					
Major Division	Group Symbol	Soil Group	Major division	Group Symbol	Soil Group			
GRAVEL	GW	GRAVEL, well graded		ML	SILT, low plasticity			
(more than half	GP	GRAVEL, poorly graded	SILT and CLAY	CL	CLAY, low plasticity			
of the coarse fraction is	GM	Silty GRAVEL	(low to medium plasticity)	CI	CLAY, medium plasticity			
> 2.36 mm)	GC	Clayey GRAVEL		OL	Organic SILT			
SAND	SW	SAND, well graded		MH	SILT, high plasticity			
(more than half of the coarse fraction is < 2.36 mm)	SP	SAND, poorly graded	SILT and CLAY (high plasticity)	СН	CLAY, high plasticity			
	SM	Silty SAND	(ОН	Organic CLAY / SILT			
	SC	Clayey SAND	Highly Organic	Pt	PEAT			

Coarse grained soils with fines contents between 5% and 12% are provided a dual classification comprising the two group symbols separated by a dash, e.g. for a poorly graded gravel with between 5% and 12% silt fines (poorly graded 'GRAVEL with silt'), the classification is GP-GM.

For the purpose of classification, *poorly graded, uniform,* or *gap graded* soils are all designated as poorly graded. Soils that are dominated by boulders or cobbles are described separately and are not classified.

Classification is routinely undertaken based on tactile assessment with the soil description. Refinement of soil classification may be applied using laboratory assessment, including particle size distribution and Atterberg Limits. Atterberg Limits testing is applied to the sample portion finer than 0.425 mm. Fine grained soil components are assessed on the basis of regions defined within the Modified Casagrande Chart.

Appendix B Survey plans

THE INFORMATION SHOWN ON SUCH REPRODUCTION INVALID AND NOT SUITABLE FOR USE.

LINE TYPES

SURVEY INFORMATION

1. THE SURVEY IS ON MAP GRID OF AUSTRALIA (MGA) CO-ORDINATES (GDA 94) ZONE 56.

-THE ORIGIN OF CO-ORDINATES IS SSM 35960 E 385577.111 N 6361013.698 -SOURCE OF CO-ORDINATES: SCIMS -DATE 02/12/2021

2. ALL REDUCED LEVELS ARE ON AUSTRALIAN HEIGHT DATUM (A.H.D)

-ORIGIN OF LEVELS SSM 35960. RL2.931 -SOURCE OF REDUCED LEVELS: SCIMS -DATE OF REDUCED LEVELS 02/12/2021

- 3. CONTOUR INTERVAL IS 0.2m.
- MGA AND ISG CO-ORDINATE SYSTEMS ARE BASED ON A MATHEMATICAL EARTH MODEL AND SUBJECT TO VARIABLE SCALE FACTORS. DISTANCES CALCULATED FROM CO-ORDINATES MAY VARY SIGNIFICANTLY FROM GROUND MEASUREMENTS. IF FURTHER 4. CLARIFICATION IS REQUIRED CONTACT MONTEATH AND POWYS.

S		COPYRIGHT NOTICE THIS DOCUMENT REMAINS THE PROPERTY OF MONTEATH & POWYS PTY LID.	M S-	PLANNING PROJECT MANAGEMENT SURVEYING 3D SPATIAL	Surveyed M&P	Drafted MAK	Checked BJB	GHD	Sheet No.
EVISION		CONDITIONS OF USE. THIS DOCUMENT MAY ONLY BE USED BY THE CLIENT FOR THE PURPOSE FOR WHICH IT WAS COMMISSIONED. USE OF THE	Monteath	monteathpowys.com.au P (02) 4926 1388	REC	SISTERED SURVE	YOR	Title DETAIL SURVEYS FOR PROPOSED BILLBOARDS TEAL STREET & CORMORANT ROAD	Revision
~	1 No	ISSUE TO CLIENT M&P Mak BJB 20/12/21 DOCUMENT FOR ANY OTHER INFORCES REVISION SVY DFT CHR AUX AVR AUX DEFENSITION	& Powys	NEWCASTLE SYDNEY GUNNEDAH MUSWELLBROOK	@A3 : DO NOT		Original Size A3	E KOORAGANG ISLAND CAD File: 210488A_01 Ref No: 21/0488 Date: 10/12/2021	1

PLANNING PROJECT MANAGEMENT

NEWCASTLE SYDNEY GUNNEDA

monteathpowys.com.au P (02) 4926 1388 (bsi, so) 900 Vote Name

Òz

Monteath & Powys

1. THE SURVEY IS ON MAP GRID OF AUSTRALIA (MGA) CO-ORDINATES (GDA 94) ZONE 56.

-THE ORIGIN OF CO-ORDINATES IS SSM 160874 E382971.380 N6361581.077 -SOURCE OF CO-ORDINATES: SCIMS -DATE 03/08/2020

2. ALL REDUCED LEVELS ARE ON AUSTRALIAN HEIGHT DATUM (A.H.D.)

AK BJB 20/12/21

M&P

SVY DFT CHK DATE

-ORIGIN OF LEVELS SSM 160874. RL3.835 -SOURCE OF REDUCED LEVELS: SCIMS -DATE OF REDUCED LEVELS 03/08/2020

3. CONTOUR INTERVAL IS 0.2m.

ISSUE TO CLIENT

REVISION

4. MGA AND ISG CO-ORDINATE SYSTEMS ARE BASED ON A MATHEMATICAL EARTH MODEL AND SUBJECT TO VARIABLE SCALE FACTORS, DISTANCES CALCULATED FROM CO-ORDINATES MAY VARY SIGNIFICANTLY FROM GROUND MEASUREMENTS. IF FURTHER CLARIFICATION IS REQUIRED CONTACT MONTEATH AND POWYS.

> COPYRIGHT NOTICE THIS DOCUMENT REMAINS THE PROPERTY OF MONTEATH & POWYS PTY LTD. C

CONDITIONS OF USE. THIS DOCUMENT MAY ONLY BE USED BY THE CLIENT FOR THE PURPOSE FOR WHICH IT WAS COMMISSIONED. USE OF THE DOCUMENT FOR ANY OTHER PURPOSE IS NOT PERMITTED UNLESS PRIOR WRITTEN

APPROVAL HAS BEEN OBTAINED FROM MONTEATH & POWYS PTY LTD.

CONDITIONS OF USE.

	•		/	 DENOTES DENOTES DENOTES DENOTES DENOTES DENOTES DENOTES DENOTES DENOTES 	TELEC WATEF FENCI RETAI EDGE TOP (CENTF EDGE EDGE TREE GUAR	NG NING WALL OF CONCRETE DF BANK RELINE OF BIT OF BITUMEN OF GRAVEL LINE D RAIL	NS CABLE	
	0	<u></u>	8	16 REDUCTION	RATIO	24 D — 1:400	32	40m
SURVEYING 3D SPATIAI	Surveyed	Drafted MAK	Checked BJB	Client		GHD		Sheet No.
1 1 150 150 150 150 150 150 150 150 150		GISTERED SURVE	_{YOR} Original Size	TE	EAL STRE	'S FOR PROPOSED EET & CORMORAN ORAGANG ISLAND	T ROAD	Revision
H MUSWELLBROOK	DO NO	r scale	A3	CAD File: 21048	8A_01	Ref No: 21/0488	Date: 10/12/2021	1

Appendix C Borehole logs

	ject :							Ind Contamination Assessment HOLE No.			• ET 1 OF 2
	ation ition :			t location pl		Road, I	Koora	gang Island Surface RL: 4.01m AHD Angle from Horiz. : 90°		SHEL	Processed : E.D
		: Hydro		•	unting:	Track		Contractor : Total Drilling Pty Ltd Driller : T.M			Checked : JMS
-					unung.			5,			
Dat	e Star	ted: 10	5/12/20	JZT		Dat	e con	npleted : 16/12/2021 Logged by : E.D			Date: 26/02/2022 Note: * indicates signatures on origissue of log or last revision of log
		DRILLI	NG					MATERIAL			issue of log or last revision of lo
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
1	Augar –			SPT 11/13/12 N=27 SPT 4/5/6	2.80		SP	ASPHALT [FILL] SAND: fine to coarse grained, brown, with clay, trace fine gravel (fill)	M		Appears well compacted
3	A 			N= 11	3.20		SP	SAND: fine to coarse grained, grey, with trace clay and trace shell (estuarine) CLAY: high plasticity, black, with fine to coarse grained sand, trace shells (estuarine)	M w = PL	F	
5				SPT 2/2/7 N=7			SP	SAND: fine to coarse grained, grey, with clay and shells (estuarine)	Μ	L	
5	e bit auger			SPT 4/4/2 N=6	5.50		SP	SAND: fine to coarse grained, pale grey, trace clay (estuarine)	M	L	
	Washbore + TC blade			SPT 15/17/20 N=37 SPT						D	
,				11/19/30						L	
3 [GHE	_		-	ob N	•

_	BOREH	OLE LO	DG SHE	ET							
5	Client			a Pty Limite				nd Contamination Assessment HOLE No.	R	ΗŊ	1
	Project			•							
? —						Road,	Koorag	gang Island		SHEE	T 2 OF 2
1	Positio			st location pl		Treak		Surface RL: 4.01m AHD Angle from Horiz.: 90			Processed : E.D
<u>ا</u>			droP Sco 16/12/2		unting:			Contractor : Total Drilling Pty Ltd Driller : T.M npleted : 16/12/2021 Logged by : E.D			Checked : JMS Date: 26/02/2022
╟	Jale 3			.021		Dd	.e 001				Note: * indicates signatures on original issue of log or last revision of log
		DRIL	LING	1				MATERIAL			issue of log or last revision of log
								Description	E		Comments/
	Drilling Method	Hole Support	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	[COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Observations
	Washbore + TC blade bit auger	,		N=40 SPT 25/100mm N=ref SPT 25/100mm	0.00			SAND: as previous	M	L	
	10		10/14/	V=ref	9.92			End of borehole at 9.92 metres. Target Depth			
	12										
	13										
	15										
_		·	abc: 1			GHI	 ר	1		ob N	
0	details	of abb	sheets reviations scriptions	ons 🤆	HD	Level T: +6	3, GHD 1 2 497) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS			12552168

Pos Rig	ition: Type:		r to tes oP Scou			Track		Surface RL: 3.34m AHD Angle from Horiz.: 90' Contractor: Total Drilling Pty Ltd Driller: T.M npleted: 16/12/2021 Logged by: E.D			T 1 OF 2 Processed : E.D Checked : JMS Date: 26/02/2022
- 41				~ - 1		Da		MATERIAL			Note: * indicates signatures on ori issue of log or last revision of log
	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
					0.40		SC	 [FILL] Clayey SAND: fine to coarse grained, brown, with fine gravel, trace shells and rootlet (fill) [FILL] Clayey SAND: fine to coarse grained, brown, trace fine gravel (fill) 	M		
2	V-bit auger			SPT 11/ 25 for 125mm HB N=ref SPT 0/0/0 N=0	1.70 1.80 2.50		SP CH SP	SAND: fine to coarse grained, grey, with clay (estuarine) CLAY: high placity, black, with fine to medium grained sand (estuarine) SAND: fine to coarse grained, grey with clay and trace shell (estuarine)	M w= PL M	MD F VL- L	
5				SPT 2/2/2 N=4							
)	lbore + TC blade bit auger —			SPT 4/8/6 N=14 SPT 7/10/9 N=19						MD	
3	Washbore			SPT 4/7/3 N=10				7.50 m: clay content increasing			

В	OREHO		SHE	ET							
	lient :			a Pty Limite				HOLE No.	В	H0:	2
	roject :			Island Billi t, Cormorar				nu contamination Assessment			— T 2 OF 2
	osition			t location pl		, NOUIA	yang i	Surface RL: 3.34m AHD Angle from Horiz. : 90'			Processed : E.D
	ig Type				unting:	Track		Contractor : Total Drilling Pty Ltd Driller : T.M			Checked : JMS
	ate Star							npleted : 16/12/2021 Logged by : E.D			Date: 26/02/2022
		DRILL	ING					MATERIAL			Note: * indicates signatures on origina issue of log or last revision of log
_											
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth metres	Graphic Log	USC Symbol	Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects	Moisture Condition	Consistency / Density Index	Comments/ Observations
- - - - - - - - - - - - - - - - - - -	► Washbore + TC blade bit auger			SPT 7/10/14 N=24 SPT	8.50		SP	SAND: as previous SAND: fine to medium, grey, with clay, trace shells (estuarine)	M 	VL- L	
- - 1(- - - - - - - - - - - - - - -)			_14/19/15 for 130 mm N=ref	9.82			End of borehole at 9.82 metres. Target Depth			
- - - - - - - - - - - - - - - - - - -	2										-
- - - 13 - - -	3										-
- - - - - - - - - -	1										
- - 15 - - - - - - - - - - - - - - - - - - -											-
S de	ee stan etails o basis o	fabbro	eviatio	ons 🧲	HD		3, GHD 1 2 497) Tower, 24 Honeysuckle Drive, Newcastle 2300 Australia 79 9999 F: +61 2 4979 9988 E: ntlmail@ghd.com NG GEOTECHNICAL ENGINEERS AND GEOLOGISTS	J	ob N	lo. 12552168

Appendix D

Geotechnical and contamination laboratory test results

CERTIFICATE OF ANALYSIS 286899

Client Details	
Client	GHD Pty Ltd
Attention	David Brooke
Address	57-63 Herbert Street, Artarmon, NSW, 2064

Sample Details	
Your Reference	<u>12552168</u>
Number of Samples	2 Soil
Date samples received	19/01/2022
Date completed instructions received	19/01/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details			
Date results requested by	27/01/2022		
Date of Issue	25/01/2022		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

<u>Results Approved By</u> Diego Bigolin, Inorganics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 286899 Revision No: R00

Page | 1 of 7

Client Reference: 12552168

Misc Inorg - Soil					
Our Reference		286899-1	286899-2		
Your Reference	UNITS	BH01	BH02		
Depth		1.50-1.95	5.50-5.95		
Date Sampled		16/12/2021	16/12/2021		
Type of sample		Soil	Soil		
Date prepared	-	20/01/2022	20/01/2022		
Date analysed	-	20/01/2022	20/01/2022		
pH 1:5 soil:water	pH Units	8.9	7.5		
Electrical Conductivity 1:5 soil:water	μS/cm	70	330		
Chloride, Cl 1:5 soil:water	mg/kg	<10	<10		
Sulphate, SO4 1:5 soil:water	mg/kg	<10	600		
Method ID	Methodology Summary				
-----------	---				
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.				
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.				
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.				

Client Reference: 12552168

QUALITY	CONTROL:	Misc Ino	rg - Soil			Duj	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			20/01/2022	[NT]		[NT]	[NT]	20/01/2022		
Date analysed	-			20/01/2022	[NT]		[NT]	[NT]	20/01/2022		
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	101		
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	101		
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	98		
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	[NT]	[NT]	100	[NT]	

Client Reference: 12552168

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Client Reference: 12552168

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Samples were out of the recommended holding time for this analysis.

teria	al Test	Report				Report	t No: SYI	D22000 Issue No
						Accredited for comp Testing	liance with ISO	/ IEC 17025
nt:	Ooh! Media					looning		
	76 Berry St				NATA	\sim	7	/
	Nth Sydney	NSW 2060				H	<u> </u>	L
ject:	12552168				NATA Accreditation	Approved Signato	orv: D.P Broo	ke
jeci.	12002100				No: 679	Date of Issue: 1/		
					THIS DOCUMENT S			CEPT IN FI
nple D	etails							
Sample	No	SYD22-0016-01						
oled By It Locati		Sampled by GHI Kooragang Islan						
TP No.	ion	BH01						
h (m)		1.50 - 1.95						
Classific	cation	SAND (SP)						
		as per AS1726 t	tables 9 & 10					
er Tes	st Results							
ription			Method			Result	Lim	its
ature Co	pefficient		AS 1289.3.6.1			1.28		
ature Co	pefficient pefficient		AS 1289.3.6.1			1.28 2.19		
ature Co prmity Co	pefficient	ution	AS 1289.3.6.1		AS 1289	2.19		
ature Co ormity Co	befficient	ution	AS 1289.3.6.1		AS 1289 Drving b	2.19		
ature Co ormity Co ticle S % Passi	befficient	ution	AS 1289.3.6.1		Drying b	2.19)22	
ature Co prmity Co ticle S % Passi	befficient	ution	AS 1289.3.6.1		Drying b Date Tes	2.19 .3.6.1 y: Oven sted: 24/01/20		
ature Co ormity Co ticle S % Passi	befficient	ution	AS 1289.3.6.1		Drying b Date Tes	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed		Limits
ature Co prmity Co ticle S % Passi	befficient	ution	AS 1289.3.6.1	·	Drying b Date Tes Note: S Sieve Si 4.75mm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100	Limits
ticle S % Passi	befficient	ution	AS 1289.3.6.1		Drying b Date Tes Note: S Sieve Si 4.75mm 2.36mm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100	Limits
ticle S % Passi 100 80 70	befficient	ution	AS 1289.3.6.1		Drying b Date Tes Note: S Sieve Si 4.75mm 2.36mm 1.18mm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 100	Limits
ature Co prmity Co ticle S % Passi 100 90 80 70 60	befficient	ution	AS 1289.3.6.1	· · · · · · · · · · · · · · · · · · ·	Drying b Date Tes Note: S Sieve Si 4.75mm 2.36mm 1.18mm 600µm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 100 97	Limits
ticle S % Passi 100 80 70	befficient	ution	AS 1289.3.6.1		Drying b Date Tes Note: S Sieve Si 4.75mm 2.36mm 1.18mm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 100	Limits
ature Co prmity Co ticle S % Passi 100 90 80 70 60	befficient	ution	AS 1289.3.6.1		Drying b Date Tes Note: 5 Sieve Si 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 97 82 33 6	Limits
ature Co prmity Co ticle S % Passi 100 80 70 60 50	befficient	ution	AS 1289.3.6.1		Drying b Date Tes Note: 5 Sieve Si 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 100 97 82 33	Limits
ticle S % Passi 100 80 70 60 50 40 30	befficient	ution	AS 1289.3.6.1		Drying b Date Tes Note: 5 Sieve Si 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 97 82 33 6	Limits
ticle S % Passi 90 80 60 50 40	befficient	ution	AS 1289.3.6.1		Drying b Date Tes Note: 5 Sieve Si 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 97 82 33 6	Limits
ature Co prmity Co ticle S % Passi 100 90 80 70 60 50 40 30	befficient	ution	AS 1289.3.6.1		Drying b Date Tes Note: 5 Sieve Si 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 97 82 33 6	Limits
ature Co prmity Co ticle S % Passi 100 80 80 50 60 50 40 10 10	befficient	ution	AS 1289.3.6.1		Drying b Date Tes Note: 5 Sieve Si 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 97 82 33 6	Limits
ticle S % Passi 100 80 50 50 30 20	befficient				Drying b Date Tes Note: 5 Sieve Si 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 97 82 33 6	Limits
ature Co prmity Co ticle S % Passi 100 80 80 50 60 50 40 10 10	befficient	ution ution ution ution ution ution		2.36mm 4.75mm	Drying b Date Tes Note: 5 Sieve Si 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 97 82 33 6	Limits
ature Co prmity Co ticle S % Passi 100 80 80 50 60 50 40 10 10	befficient		1.18mm	2.36mm 4.75mm	Drying b Date Tes Note: 5 Sieve Si 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 97 82 33 6	Limits
ature Co prmity Co ticle S % Passi 100 80 80 50 60 50 40 10 10	befficient	300µm 425µm 600µm	1.18mm	2.36mm 4.75mm	Drying b Date Tes Note: 5 Sieve Si 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 97 82 33 6	Limits
ature Co prmity Co ticle S % Passi 100 80 80 50 60 50 40 10 10	befficient	300µm 425µm 600µm	1.18mm	2.36mm 4.75mm	Drying b Date Tes Note: 5 Sieve Si 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	2.19 .3.6.1 y: Oven sted: 24/01/20 Sample Washed	Passing 100 100 97 82 33 6	Limits

Comments

Materi	al Test Report	Report No: SYD2200067 Issue No: 1
Client:	Ooh! Media 76 Berry St	Accredited for compliance with ISO / IEC 17025 - Testing
	Nth Sydney NSW 2060	
Project:	12552168	NATA Accreditation Approved Signatory: D.P Brooke No: 679 Date of Issue: 1/02/2022 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

- . - .

GHD Sample NoSYD22-0016-02Sampled BySampled by GHD Geotechnical
SAND pale greyClient LocationKooragang Island BillboardBH / TP No.BH01Depth (m)4.00 - 4.45

lest Results			
Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)			
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.2	N/A	
Plastic Limit (%)	AS 1289.3.2.1	NP	
Plasticity Index (%)	AS 1289.3.3.1	NP	

Comments

NP = Non Plastic

-4	-I T 4				I	Report No: SYD	
ateria	al lest	Report				ls	ssue No:
					Accredite Testing	for compliance with ISO /	IEC 17025
ent:	Ooh! Media						,
	76 Berry St				NATA	R	/
	Nth Sydney	NSW 2060				LA C	6
oject:	12552168				NATA Accreditation Approve	d Signatory: D.P Brook	e
-					No: 679 Date of I	ssue: 1/02/2022	
					THIS DOCUMENT SHALL NO	T BE REPRODUCED EX	CEPT IN FL
mple D	etails						
D Sample	No	SYD22-0016-0 Sampled by C)3 HD Geotechnica				
іріец Бу		SAND with silt					
nt Locati	ion	Kooragang Isla	and Billboard				
/ TP No. oth (m)		BH01 6.50 - 6.95					
un (m)		0.50 - 0.95					
her Tes	st Results						
cription			Method			sult Limi [.]	ts
vature Co	efficient			4	1	04	
formity Co			AS 1289.3.6	.1		.01 .48	
formity Cc			AS 1289.3.6	.1			
		ution	AS 1289.3.0.	.1			
	efficient	ution	AS 1289.3.0.	.1	2 AS 1289.3.6.1 Drying by: Over	.48	
rticle S	efficient	ution	AS 1289.3.0		2 AS 1289.3.6.1	.48	
rticle S % Passi	efficient	ution	AS 1289.3.0		AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample	.48 1 4/01/2022 Washed	
rticle S % Passi 100 90	efficient	ution	AS 1289.3.0.		AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample ' Sieve Size	.48 4/01/2022 Washed % Passing	Limits
rticle S % Passi 100 90 80	efficient	ution	AS 1289.3.0		AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample V Sieve Size 4.75mm	.48 1 4/01/2022 Washed % Passing 100	Limits
rticle S % Passi 100 90 80 70	efficient	ution	AS 1289.3.0		AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm	.48 1 4/01/2022 Washed % Passing 100 100 100	Limits
rticle S % Passi 100 90 80	efficient	ution	AS 1289.3.0		AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample V Sieve Size 4.75mm 2.36mm 1.18mm 600µm	.48 1 4/01/2022 Nashed % Passing 100 100 100 98	Limits
rticle S % Passi 100 90 80 70	efficient	ution	AS 1289.3.0		2 AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample 1 Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm	.48 1 4/01/2022 Washed % Passing 100 100 100 98 89	Limits
rticle S % Passi 100 90 80 70 60	efficient	ution	AS 1289.3.0		2 AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample 1 Sieve Size 4.75mm 2.36mm 1.18mm 600μm 425μm 300μm 150μm	.48 4/01/2022 Washed % Passing 100 100 100 98 89 52 11	Limits
rticle S % Passi 100 90 80 60 50 40	efficient	ution	AS 1289.3.0		2 AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample 1 Sieve Size 4.75mm 2.36mm 1.18mm 600μm 425μm 300μm	.48 1 4/01/2022 Washed % Passing 100 100 100 98 89 52	Limits
rticle S % Passi 100 90 80 70 60 50 40 30	efficient	ution	AS 1289.3.0		2 AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample 1 Sieve Size 4.75mm 2.36mm 1.18mm 600μm 425μm 300μm 150μm	.48 4/01/2022 Washed % Passing 100 100 100 98 89 52 11	Limits
rticle S % Passi 100 90 80 60 50 40	efficient	ution	AS 1289.3.0		2 AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample 1 Sieve Size 4.75mm 2.36mm 1.18mm 600μm 425μm 300μm 150μm	.48 4/01/2022 Washed % Passing 100 100 100 98 89 52 11	Limits
rticle S % Passi 100 90 80 70 60 50 40 30	efficient	ution	AS 1289.3.0.		2 AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample 1 Sieve Size 4.75mm 2.36mm 1.18mm 600μm 425μm 300μm 150μm	.48 4/01/2022 Washed % Passing 100 100 100 98 89 52 11	Limits
rticle S % Passi 100 90 80 60 50 30 30 10 0	efficient				2 AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample 1 Sieve Size 4.75mm 2.36mm 1.18mm 600μm 425μm 300μm 150μm	.48 4/01/2022 Washed % Passing 100 100 100 98 89 52 11	Limits
rticle S % Passi 100 90 80 60 50 30 30 10 0	efficient				2 AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample 1 Sieve Size 4.75mm 2.36mm 1.18mm 600μm 425μm 300μm 150μm	.48 4/01/2022 Washed % Passing 100 100 100 98 89 52 11	Limits
rticle S % Passi 100 90 80 60 50 30 30 10 0	efficient	300µm 425µm	1.16mm	1. 2.38mm 4.75m 4.75m	2 AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample 1 Sieve Size 4.75mm 2.36mm 1.18mm 600μm 425μm 300μm 150μm	.48 4/01/2022 Washed % Passing 100 100 100 98 89 52 11	Limits
rticle S % Passi 100 90 80 60 50 30 30 10 0	efficient		1.16mm		2 AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample 1 Sieve Size 4.75mm 2.36mm 1.18mm 600μm 425μm 300μm 150μm	.48 4/01/2022 Washed % Passing 100 100 100 98 89 52 11	Limits
rticle S % Passi 100 90 80 60 50 30 30 10 0	efficient	300µm 425µm	1.16mm		2 AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample 1 Sieve Size 4.75mm 2.36mm 1.18mm 600μm 425μm 300μm 150μm	.48 4/01/2022 Washed % Passing 100 100 100 98 89 52 11	Limits
rticle S % Passi 100 90 80 60 50 30 30 10 0	efficient	300µm 425µm	1.16mm		2 AS 1289.3.6.1 Drying by: Over Date Tested: 2 Note: Sample 1 Sieve Size 4.75mm 2.36mm 1.18mm 600μm 425μm 300μm 150μm	.48 4/01/2022 Washed % Passing 100 100 100 98 89 52 11	Limits

Comments N/A

ateri	al Test	Reno	rt					Report		022000 ssue No
aterr	ai 1031	перо					Accredi	ted for complia		
lient:	Ooh! Media						Testing			
	76 Berry St						NATA	~ 0		/
		NSW 2060					NAIA	1 X		L
	Null Oyunoy	11011 2000						Þ		
roject:	12552168					N	ATA Accreditation Approv	ved Signator	y: D.P Broo	ke
								f Issue: 1/0		
							THIS DOCUMENT SHALL N	IOT BE REPR	ODUCED EX	CEPT IN FL
ample D	Details									
ID Sample		SYD22-00								
mpled By ent Locat			oy GHD Ge g Island Bill		cal					
I / TP No.		BH02	y island bill	ibuaru						
pth (m)		5.50 - 5.95								
il Classifi	cation	SAND (SF		0 0 40						
		as per AS	1726 tables	\$9&10						
	st Results		Mot	hod			В	ooult	Line	ito
scription				t hod 1289.3.6	3.1		ĸ	esult 1.03	Lim	its
irvatura (`'	natticiant							1.05		
irvature Co iformity Co				1200.0.0				2.06		
iformity Co	oefficient	ution	A0	1200.0.0			AS 1289 3 6 1			
article S	oefficient Size Distrib	ution		1200.0.0			AS 1289.3.6.1 Drving by: Ov			
article S % Pase	oefficient Size Distrib	ution					AS 1289.3.6.1 Drying by: ^{Ov} Date Tested:	en	22	
article S % Pase 100 []	oefficient Size Distrib	ution					Drying by: ^{Ov} Date Tested:	en 24/01/202	22	
article S % Pase	oefficient Size Distrib	oution					Drying by: Ov Date Tested: Note: Sample	en 24/01/202 e Washed		Limits
article S % Pase 100 []	oefficient Size Distrib	ution					Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm	en 24/01/202 e Washed	assing 100	Limits
article S % Pass 100 - · · · 90 - · ·	oefficient Size Distrib	ution			· · · · · · · · · · · · · · · · · · ·		Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm	en 24/01/202 e Washed	assing 100 100	Limits
article S % Pass 100 T · · · 90 + · · 80 + · · 70 + · ·	oefficient Size Distrib	oution					Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm	en 24/01/202 e Washed	assing 100 100 100	Limits
article S % Pass 100 90 80 70 60	oefficient Size Distrib	ution					Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm	en 24/01/202 e Washed	assing 100 100 100 98	Limits
article S % Pass 100 T · · · 90 + · · 80 + · · 70 + · ·	oefficient Size Distrib	ution	~~~~				Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm	en 24/01/202 e Washed	assing 100 100 98 88 41	Limits
article S % Pass 100 90 80 70 60	oefficient Size Distrib	ution					Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	en 24/01/202 e Washed	assing 100 100 98 88 41 4	Limits
article S % Pass 100 90 80 70 60 50	oefficient Size Distrib	oution					Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm	en 24/01/202 e Washed	assing 100 100 98 88 41	Limits
article S % Pass 100 T 90 80 70 60 50 40 30	oefficient Size Distrib	ution					Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	en 24/01/202 e Washed	assing 100 100 98 88 41 4	Limits
article S % Pass 100 90 80 60 50 40 30 20	oefficient Size Distrib	ution					Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	en 24/01/202 e Washed	assing 100 100 98 88 41 4	Limits
article S % Pass 100 T 90 80 70 60 50 40 30	oefficient Size Distrib	oution					Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	en 24/01/202 e Washed	assing 100 100 98 88 41 4	Limits
article S % Pass 100 90 80 60 50 40 30 20	oefficient						Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	en 24/01/202 e Washed	assing 100 100 98 88 41 4	Limits
article S % Pass 100 T 90 T 80 T 60 T 50 T 40 T 30 T 10 T 60 T 50 T 10	oefficient					75mm	Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	en 24/01/202 e Washed	assing 100 100 98 88 41 4	Limits
article S % Pass 100 T 90 T 80 T 60 T 50 T 40 T 30 T 10 T 60 T 50 T 10	oefficient	oution	600µm			4.75mm	Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	en 24/01/202 e Washed	assing 100 100 98 88 41 4	Limits
article S % Pass 100 T 90 T 80 T 60 T 50 T 40 T 30 T 10 T 60 T 50 T 10	oefficient					4.75mm	Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	en 24/01/202 e Washed	assing 100 100 98 88 41 4	Limits
article S % Pass 100 T 90 T 80 T 60 T 50 T 40 T 30 T 10 T 60 T 50 T 10	oefficient		600µm			4.75mm	Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	en 24/01/202 e Washed	assing 100 100 98 88 41 4	Limits
article S % Pass 100 T 90 T 80 T 60 T 50 T 40 T 30 T 10 T 60 T 50 T 10	oefficient		600µm			4.75mm	Drying by: Ov Date Tested: Note: Sample Sieve Size 4.75mm 2.36mm 1.18mm 600µm 425µm 300µm 150µm	en 24/01/202 e Washed	assing 100 100 98 88 41 4	Limits

N/A

<u>.</u>	CHAIN OF CUSTOD				ne Cove West NSW 2056 NSW@eurofins.com	Unit 1	ane Laboratory 21 Smallwood Place Mur 12 4600 EnviroSampled			iboratory Leach Highway Kewo 1600 EnviroSample)				61	Nonterey	ELaboratory Road Dandenong Sol		15
Compa	UFIL		Project Nº	1255	2168			Alison				_	1			00 EnviroSampleVic		
Addres	B Floor 3 24 F Drive New (a ame Alison Monk	bneysuchl	Project Name	Kooraa	gang Isla	nd bill	ESdet, EQuIS etc	11(1-304)	110110	ing	Han	ided over	by 7	mil	n	ennis ennis		-
	Drive Newca	IS HE NSW	illered.		544						Ema	il for Invo	ice /	1.50	~ /	Mark 1	a de	
Contact N	ame Alison Monk	ley 2300	Total" or "F								Ema	il for Resu	ilts /	111-20	<i>n.</i>	nonnje	ey Oghd	l'com
Phone	1º 0447 108 20	08	essecity" setract Su								CI		Containe	_		Required Tu	Irnaround Time (TAT) be 5 days if not ticked.	
Special Dire	Alison will en through require for what test.	e somples	Analys requested, pleas a must be used (c												delines)	Overnight (♦Surcharge will apply (reporting by 9am)♦	
Purchase (metals are SUITE cod								astic	astic astic	ir Glass	Bottle	WA Gul	□ 2 days♦) ☐ 1 day∳ ☐ 3 days∳	
Quote ID	Ne	_	Where								500mL Plastic	250mL Plastic 125mL Plastic	200mL Amber Glass 40ml VOA vial	500mL PFAS Bottle Jar (Glass or HDPF)	ASA	5 days (Sta	ndard))
Ne	Client Sample ID	Sampled Date/Time dd/mm/yy hh:mm	Matrix Solid (S) Water (W)								LO O	0 -	2001	500r Jar (Other (Asbestos		ele Comments Goods Hazard Warning	9
1 BH	010 - 0.2m 010.3 - 0.5m	16/12 :	5											X	1	Such	Ascid Bu	. color
2 BH	01 0.3-0.5m	10 11													. 1	Jan /	MSCIU DI	<u>x</u> rpna
3 BH	101 0.9-1m													1	X			-
4 BH													-	Y				_
5 BH															Y			
· BH										_			-	X	1	/		
	101 3m												_	X				_
· BH													-	t í	X			_
9 RI	-101 4m								_	_			_	Х	•			_
10 3		V							_					X	X			
12	-101 5m													X	X	U	/	
Method of Ship	ment Courier (#	Total Cou	Ints	Postal	News									У				
	Received By	, L na		INE MEL PER	ADL NTL DRW	Signature		Signature	Date	- V JIE-S	-	Date				Time	10.0	
Laboratory l	Received By	OR			ADE I NTL DRW	Signature	100	20		22.12.2		Time Time	ç	300	22	Temperature Report No	17.9	-
Eurofins Environm	ent Testing Australia Pty Ltd			-	Submission of samples to	the laboratory will be	e deemed as a mptance	of Eurofins Environment	Testing Standard Term	s and Conditions unle	ss sgreed of		O la avai	able on reque	all	Toportitz	12245	6

Q53009_R10 Modified by: Dr. R Symons Approved by: G. Jackson Approved on: 8 August 2019

Submission of samples to the laboratory will be deemed as appropriate of Eurolins | Environment Testing Standard Terms and Conditions unless agreed otherwise. A copy is available on request,

-3	C	Eurofine Environment Testing ABN 50		Unit F3	/ Laboratory Bld.F 16 Mars Road Lai 8400 EnviroSamplei	ne Cove West NSW 2066 NSW@eurofins.com	Unit 1 2	ne Laboratory 1 Smallwood Place Muran 4600 EnviroSampleQLI		Perth Laboratory Unit 2 91 Leach Highwa 08 9251 9600 EnviroS					6 Montere	ne Laboratory y Road Dandenong Sout	h VIC 3175	15
Con	npany	GHD		Project Nº	1255	2168				Monhley		ampler(s	s}		13 8364 5	000 EnviroSampleVic@	geurofins.com	
Add	dress	Floor 3 24 H drive Newca	oneusudule	Project Name				EDD Format ESdat, EQuIS etc		, .on ngeg		ided ovei						
Contac				al" or "Filtered". : pricing.								il for Inv	oice	Alis	01	Monh	leyeg	hel·con
Pho	ne Nº	Alison Mon 04471082	08	s specify Tola tract SUITE									Contair			Required Tur	naround Time (TAT)	
Special D	Directions	tl '	(1	Analyses quested, please s rust be used to at								nange cond	ainer type a	size il neces	les)	Overnight (n	e 5 days if not ticked.	
Purchas	se Order			etals are re							stic	stic	Glass	Bottle	HDPE) WA Guide	☐ Same day∳ ☐ 2 days● ☐ 5 days (Stan ☐ Other(⊡ 1 day∳ ⊡ 3 days∳	
Quote	e ID N≘			Where m St							500mL Plastic	250mL Plastic 125mL Plastic	200mL Amber Glass	40mL PFAS Bottle	Jar (Glass or HDPE) sbestos AS4964, WA Gui	5 days (Stan	dərd)	
No		Client Sample ID	Date/Time	Matrix Solid (S) Vater (W)							õ	51 F	200n	40 500n	Jar () Other (Asbesto	Sample	e Comments bods Hazard Warning	
		6.5M	16/12 5)	×х	Sarl	Acid sur	hake
	SHO														y X	1	icid sur	
		01 8.5m												,	x7			
4 B	140	19.5m													XX	V		1
5 B	,HO	10 - 0.2m														Asbee	tas	-
	Ho	10.3-0.5	и												X	Asbe:	stos	-
7 B	HO	10.9 - 1m													X	Asbes	itas	
B	HO	12m													X	Acricl	surphyte	-
· B	HIC)13m	, 1,												X	Acid	surphate	
10	SHI	011.5m													1.11	Hisbes		
			Total Coun	ts											Í	1000	3(0.3	
Method of S	Shipment	Courier (# Received By) 🗌 Hand		Postal BNE MEL PER	Name	Disector		Signature			Date				Time		
Laborato	ory Use Oni		OR		BNE MEL PER		Signature	100	P	Date 77 17		Time	0	2		Temperature	00040	
Eurofins Envi	Ironment Test	ing Australia Pty Ltd						my		Date 22-12	4-1	Time	Z	3.30	lai	Report No	85245	0

Q\$3009_R10 Modified by: Dr. R Symons Approved by: G, Jackson Approved on: 8 August 2019

Submission of samples to the laboratory will be deemed as acceptance of Eurorine | Environment Testing Standard Terms and Conditions unless agreed otherwise. A copy is available on request,

13	CHAIN OF C	USTODY ant Testing ABN 50		Unit F	<mark>ey Laboratory</mark> 3 Bld.F 16 Mars Road L 30 8400 EnviroSampl	ana Cove West NSW 2056 sNSW@eurofins.com	Unit 1 2	ne Laboratory 1 Smallwood Place Murar 4600 EnviroSamplaQL			each Highway Kewdal 100 EnviroSampleWA				6	Monterey	e Laboratory y Road Dandenong Sou 200 EnviroSampleVict		15
Compa	ny GHD)		Project №	1258	52168	7	Project Manager	Alison			-	impler(s))			vo Envirosampievio	@euronits.com	٦
Addre	55		q	Project Nam	e			EDD Format ESdat, EQuIS etc)	Hand	led over	by					-
Contact I Phone	П1150	Mon 108-	Uley 208	es e specity "Total" or "Filered".) attract SUITE pricing.										Containe			Required Tu	ry Oghd. (f rnaround Time (TAT) be 5 days if not licked	con
Special Dire	ections ((17	Analys quested, pleas nust be used to												slines)		◆Surcharge will apply reporting by 9am)◆	
Purchase Quote IE				Where metals are re SUITE code re								500mL Plastic	430mL Plastic	200mL Amber Glass 40mL VOA vial	500mL PFAS Bottle	Jar (Glass of HDPE) bestos AS4964, WA Guidel	□ Same day♦ □ 2 days♦ □ 5 days (Star	☐ 3 days●	
Ne	Client Sample ID		Sampled Date/Time dd/mm/yy hb:mm	Matrix Solid (S) Water (W)								05 X	12	200m	500m	Jar (G	Samp	le Comments loods Hazard Warning	
1 BH	102 0-0.	2m	16/12	5											y	X	Jach	icid surp	ha
	102 0.4-	-0.5W														X		1	
Bł	102 m														3	< x			
		m													1	ry			
B	H022r	N													1	(x	,		
BI	-102 3r	n												-	X	1			
B	102 4	m														x			-
B		M														V		1	-
B		Sm										-							-
B	102 76.	Sm	V	V												1	1	-	-
	y y		Total C	ounts)	rX	U		
ethod of Shi	pment 🔲 Courier (#) 🛄 H	and Delivered	Postal	Name			Signature				Date				Time		
Laboratory			A SA			ADL NTL DRW	Signature	00	0	Date		1	fime	173			Temperature		
	Received By ment Testing Australia Pty Ltd		arc	SYD	BNE MEL PER	ADI NTL PORW	Signature	ay	of Eurofins Environment Te		22.12-2		lime 🛛	8	300	an	Report No	85245	6

QS3009_R10 Modified by: Dr, R Symons Approved by: G, Jackson Approved on: 8 August 2019

3	CHAIN OF CUSTODY Eurofine Environment Testing ABN 50			Laboratory d.F 16 Mars Road Lane Co 400 EnviroSampleNSW(Unit 1 2	ine Laboratory 11 Smalwood Place Murari 24600 EnviroSampleQLI	@eurofins.com	08 9251	Leach Highway Kewda 9600 EnviroSampleW		om			6 Montere	me Laboratory ay Road Dandenong South VIC 5000 EnviroSampleVic@eur	
Compa	iny (CHI)		Project №	1255	2168		Project Manager	Alison	Mon	hley	Sar	npler(s)				
Addre	ss //	(1	Project Name				EDD Format ESdat, EQuIS etc			J	Hande	ed over	by				
Contact I	Name Alisan Ma	nhlau	or "Filtered". nicing.								Email		oice f	llisc	n.1	Manhley	ghd.eo
Phone	^{Name} Alison Mo № 04471082	08	ecity "Tota" act SUITE p								Email		Contain	ers	_	Required Turnar	•
Special Dir	10	11	nalyses 1, please spu used to attr								Chai	nge conta	ainer type &	size if nece	ssary.	Default will be 5	days if not ticked.
opecial Dir			A re requester de must be										12		PE) Guidalimee	Overnight (repo	
Purchase			re metals a SUITE co								500mL Plastic 250mL Plastic	125mL Plastic	OmL Amber Glass	500mL PFAS Bottle		2 days	☐ 3 days●
Quote II	D №		Where								500mL 250mL	125mL	200mL Amber	00mL PF	ar (Glass or H estos AS4964.)
No	Client Sample ID		Matrix Solid (S) Water (W)										3	40	Ja Other (Asbi	Sample C / Dangerous Good	omments s Hazard Warning
1 B	HO28.5m														x	Jus /A	cid surp
2 B	6102 9.5m														X	11	1
3 B	Hao-0.2m		_												>	Asbes	tos
⁴ Bl	102 0,4-0.5	pA													X	Asbe	
5 BH	102 @1m														X		
6 Bh	102 1. Sm														X	Asbest	
'BI	-102 2m														>	Asbes	
B	H02 4m														X	1	
9																1.2000	
10																	
		Total Cour															
fethod of Sh	ipment Courier (# Received By) 🛄 Hand	d Delivered	Postal	Name			Signature				ate				Time	
Laboratory		an		NE MEL PER ADI	1ac	Signature Signature	an	1	Date Date	22-12-	-	ime ime		1.30	2	Temperature Report No	852456

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | Environment Testing Standard Terms and Conditions unless agreed otherwise. A copy is available on request,

Quinn Raw

From: Sent:	Alison Monkley <alison.monkley@ghd.com> Wednesday, 22 December 2021 8:37 AM</alison.monkley@ghd.com>
То:	Quinn Raw
Subject:	RE: 125521G8 COC

85 245 A

Categories:

COCs/Clients

EXTERNAL EMAIL*

Hi Quinn,

Please analyse the following samples for TRH, BTEX, PAH, heavy metals (standard 8), OCPs and PCBs

- BH01 0-0.2
- BH01 0.9-1
- BH01 3
- BH02 0-0.2
- BH02 1
- BH02 2

Please analyse the following for ASS field test

- BH01 0.9-1
- BH01 2.5
- BH01 3.5
- BH01 5
- BH01 6.5
- BH01 8.5
- BH02 1
- BH02 2
- BH02 4
- BH02 6.5
- BH02 8.5
- BH02 9.5

Alison Monkley B.Eng (Env), B.Sc, ME (groundwater) Business Group Leader – Contamination Assessment and Remediation

GHD

Proudly employee-owned | ghd.com Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle, NSW, 2300, Australia D +61 2 4979 9990 M +61 447 108 208 E alison.monkley@ghd.com

-> The Power of Commitment

Connect

Please consider the environment before printing this

From: Quinn Raw <QuinnRaw@eurofins.com> Sent: Tuesday, 21 December 2021 12:15 PM To: Alison Monkley <Alison.Monkley@ghd.com> Subject: RE: 125521G8 COC

Eurofins Environment Testing Australia Pty Ltd

Sydney

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove We NATA # 1261 Site # 1254

ABN: 50 005 085 521

Brisbane Unit F3, Building F NATA # 1261 Site # 18217

 Muraris Road
 Muraris QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 2007
 1/21 Smallwood Place NATA # 1261 Site # 20794 www.eurofins.com.au

Eurofins ARL Pty Ltd ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 **Eurofins Environment Testing NZ Limited**

EnviroSales@eurofins.com

Auckland

IANZ # 1327

NZBN: 9429046024954 Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Auckland 1061 Phone : +64 9 526 45 51 Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:	GHD Pty Ltd NEWCASTLE
Contact name:	Alison Monkley
Project name:	KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM
Project ID:	12552168
Turnaround time:	10 Day
Date/Time received	Dec 22, 2021 8:30 AM
Eurofins reference	852456

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table. /

Newcastle

4/52 Industrial Drive

Mayfield East NSW 2304

PO Box 60 Wickham 2293

NATA # 1261 Site # 25079

Phone : +61 2 4968 8448

- Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt : 17.9 degrees Celsius.
- X All samples have been received as described on the above COC.
- X COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace. 1
- Split sample sent to requested external lab. X
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

BH01 1.5M Jar labelled "1.4-1.5". Logged as BH01 1.5M as no other sample mislabelled. Please advise if incorrect. | BH01 2M & BH01 3M ASS bag listed twice on COC. | BH01 1.5M (Jar and Bag) labelled "BH01 1.4-1.5M". Logged as per COC | Two extra samples received; BH01 0.3-0.5 DUP02 & BH02 0.4-0.5M DUP02. Logged on HOLD. Please advise if analysis required. | Alison; please double check all sample names and analyses are correct. Some samples listed twice on COC, once with multiple sample containers (usually jar and bag) and again with only one (usually Asbestos Bag).

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone : (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Alison Monkley - alison.monkley@ghd.com.au.

Note: A copy of these results will also be delivered to the general GHD Pty Ltd NEWCASTLE email address.

Global Leader - Results you can trust

•••	ourofi				Eurofins Environme ABN: 50 005 085 521	nt Te	sting /	Austra	lia Pty	Ltd		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
web: ww	eurofi ww.eurofins.com.au	Envi	ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	U 175 1) L 4 P	ane Co hone : -	Road /e West -61 2 99		ر ۱ ۱ 660 ۱ 0	Brisbane //21 Smallwood Place //urarrie QLD 4172 Phone : +61 7 3902 4600 /ATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
	npany Name: dress:	GHD Pty Ltd 3/24 Honeys Newcastle NSW 2300	NEWCASTL uckle Dve	E			R	rder I eport hone: ax:	#:		852456 02 4979 9999 02 4979 9988		Received: Due: Priority: Contact Name:	Dec 22, 2021 8:30 Jan 7, 2022 10 Day Alison Monkley	АМ
	ject Name: ject ID:	KOORAGAN 12552168	IG ISLAND B	ILLBOARD GE	OTECH/CONTAM								Eurofins Analytical S	ervices Manager : Ar	ndrew Black
		Sa	mple Detail			HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9					
		ory - NATA # 12		4							4				
		- NATA # 1261				Х	X		Х	X	4				
		y - NATA # 1261						X		-	4				
		<u>/ - NATA # 1261</u> NATA # 2377 Sit								-	4				
	nal Laboratory										1				
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	BH01 0-0.2M	Dec 16, 2021		Soil	N21-De52382		Х		Х	Х					
	BH01 0.9-1M	Dec 16, 2021		Soil	N21-De52383		Х	Х	х	Х	1				
	BH01 2.5M	Dec 16, 2021		Soil	N21-De52384			Х			4				
	BH01 3M	Dec 16, 2021		Soil	N21-De52385		X		х	Х	4				
	BH01 3.5M	Dec 16, 2021		Soil	N21-De52386			Х	<u> </u>	<u> </u>	4				
	BH01 5M	Dec 16, 2021		Soil	N21-De52387			Х	<u> </u>		4				
	BH01 6.5M	Dec 16, 2021		Soil	N21-De52388			Х			4				
	BH01 8.5M	Dec 16, 2021		Soil	N21-De52389			Х			4				
9	BH01 0-0.2M	Dec 16, 2021		Soil	N21-De52390	Х									

••• ourofi			Eurofins Environme ABN: 50 005 085 521	nt Te	sting A	Austra	lia Pty	Ltd			Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
web: www.eurofins.com.au email: EnviroSales@eurofins	Environr	nent Testing	Melbourne 6 Monterey Road Dandenong South VIC 31 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	U 175 10 1 Li 1 P		Road /e West -61 2 99	NSW 2	1 N 066 F 0 N	irisbane /21 Smallwood Place /urarrie QLD 4172 /hone : +61 7 3902 4600 /ATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290	
Company Name: Address:	GHD Pty Ltd NEW 3/24 Honeysuckle Newcastle NSW 2300				Re Pl	rder M eport hone: ax:	#:	(852456 02 4979 9999 02 4979 9988		Received: Due: Priority: Contact Name:	Dec 22, 2021 8:30 Jan 7, 2022 10 Day Alison Monkley	АМ	
Project Name: Project ID:	KOORAGANG ISL 12552168	AND BILLBOARD G	EOTECH/CONTAM							I	Eurofins Analytical S	ervices Manager : Ar	ndrew Black	
	Sample	Detail		HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9						
Melbourne Laborate	ory - NATA # 1261 Site	e # 1254												
Sydney Laboratory	- NATA # 1261 Site #	18217		Х	X		Х	Х						
	y - NATA # 1261 Site					Х			_					
Mayfield Laboratory	/ - NATA # 1261 Site #	¢ 25079							_					
	NATA # 2377 Site # 23	370							_					
External Laboratory									-					
10 BH02 1M	Dec 16, 2021	Soil	N21-De52391		X	X	X	X	4					
11 BH02 2M	Dec 16, 2021	Soil	N21-De52392		X	X	Х	X	4					
12 BH02 4M	Dec 16, 2021	Soil	N21-De52393			X			4					
13 BH02 6.5M	Dec 16, 2021	Soil	N21-De52394			X			4					
14 BH02 8.5M	Dec 16, 2021	Soil	N21-De52395			X			4					
15 BH02 9.5M	Dec 16, 2021	Soil	N21-De52396	v		Х			4					
16 BH01 0.3-0.5M 17 BH01 1.5M		Soil Soil	N21-De52397	X X					4					
	Dec 16, 2021	Soil	N21-De52398						4					
	Dec 16, 2021	Soil	N21-De52399	X X					4					
	Dec 16, 2021		N21-De52400	<u>х</u> Х					-					
20 BH01 7.5M	Dec 16, 2021	Soil	N21-De52401	X										

			Eurofins Environme ABN: 50 005 085 521	nt Te	sting /	Austra	lia Pty	Ltd			Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
web: www.eurofins.com.au email: EnviroSales@eurofins.	Envii	ronment Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	U 175 1) L 4 P	ane Cov hone : -	Road /e West ⊦61 2 99		066 0	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290	
Company Name: Address:	GHD Pty Ltd I 3/24 Honeysu Newcastle NSW 2300	NEWCASTLE lockle Dve			R Pl	rder I eport hone: ax:	#:		852456 02 4979 9999 02 4979 9988		Received: Due: Priority: Contact Name:	Dec 22, 2021 8:30 Jan 7, 2022 10 Day Alison Monkley	АМ	
Project Name: Project ID:	KOORAGAN0 12552168	G ISLAND BILLBOARD G	EOTECH/CONTAM								Eurofins Analytical S	ervices Manager : Ar	ndrew Black	
	San	nple Detail		HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9						
Melbourne Laborato	ry - NATA # 126	i1 Site # 1254												
Sydney Laboratory -	NATA # 1261 S	ite # 18217		Х	X		Х	Х						
Brisbane Laboratory	- NATA # 1261	Site # 20794				Х								
Mayfield Laboratory	- NATA # 1261	Site # 25079												
Perth Laboratory - N	ATA # 2377 Site	e # 2370					 		4					
External Laboratory									4					
	Dec 16, 2021	Soil	N21-De52402	Х					4					
22 BH01 0.3-0.5M		Soil	N21-De52403	Х					4					
	Dec 16, 2021	Soil	N21-De52404	Х			 		4					
	Dec 16, 2021	Soil	N21-De52405	Х					4					
	Dec 16, 2021	Soil	N21-De52406		X		X	X	4					
26 BH02 0.4-0.5M		Soil	N21-De52407	Х					4					
27 BH02 1.5M	Dec 16, 2021	Soil	N21-De52408	Х				<u> </u>	4					
	Dec 16, 2021	Soil	N21-De52409	Х					4					
	Dec 16, 2021	Soil	N21-De52410	Х				<u> </u>	4					
	Dec 16, 2021	Soil	N21-De52411	Х				<u> </u>	4					
31 BH02 0-0.2M	Dec 16, 2021	Soil	N21-De52412	Х										

	eurofi	nc		Eurofins Environme ABN: 50 005 085 521	nt Te	sting /	Austra	lia Pty	Ltd			Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
web: w	ww.eurofins.com.au EnviroSales@eurofins	Envi	ronment Testing	Melbourne 6 Monterey Road Dandenong South VIC 31 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	U 175 10 1 Li 1 P	ane Cov hone : +	Road /e West -61 2 99		1/2 M 066 Pt 0 N/	risbane 21 Smallwood Place urarrie QLD 4172 none : +61 7 3902 4600 ATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290	
	mpany Name: dress:	GHD Pty Ltd 3/24 Honeysu Newcastle NSW 2300	NEWCASTLE uckle Dve			R(Pl	rder N eport hone: ax:	#:	0	152456 12 4979 9999 12 4979 9988		Received: Due: Priority: Contact Name:	Dec 22, 2021 8:30 Jan 7, 2022 10 Day Alison Monkley	AM	
	oject Name: oject ID:	KOORAGAN 12552168	G ISLAND BILLBOARD G	EOTECH/CONTAM							1	Eurofins Analytical Se	ervices Manager : Ar	ndrew Black	
		Sar	nple Detail		HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9						
Melb	ourne Laborato	ory - NATA # 126	61 Site # 1254												
-	ney Laboratory				Х	X		X	Х						
	bane Laboratory						Х								
	field Laboratory														
	h Laboratory - N		e # 23/U			-									
Exte 32	rnal Laboratory BH02 0.4-0.5M		Soil	N21-De52413	Х										
32	BH02 0.4-0.5M BH02 1M	Dec 16, 2021 Dec 16, 2021	Soil	N21-De52413	 X										
34	BH02 1.5M	Dec 16, 2021 Dec 16, 2021	Soil	N21-De52414	X										
35	BH02 2M	Dec 16, 2021 Dec 16, 2021	Soil	N21-De52416	×										
36		Dec 16, 2021	Soil	N21-De52417	X										
37		Dec 16, 2021	Soil	N21-De52418	x										
38	BH02 0.4-0.5M DUP02	Dec 16, 2021	Soil	N21-De52419	х										
Test	Counts				23	6	12	6	6]					

עיוייא

ac-MRA

4 Julia

NATA

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

NATA Accredited Accreditation Number 1261 Site Number 18217

GHD Pty Ltd 3/24 Honeysuckle Dve Newcastle NSW 2300

Attention:

Alison Monkley

Report Project name Project ID Received Date 852456-S KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM 12552168

Client Sample ID			^{G01} BH01 0-0.2M	BH01 0.9-1M	BH01 2.5M	BH01 3M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-De52382	N21-De52383	N21-De52384	N21-De52385
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM						
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 40	< 20	-	< 20
TRH C15-C28	50	mg/kg	< 100	< 50	-	< 50
TRH C29-C36	50	mg/kg	180	< 50	-	59
TRH C10-C36 (Total)	50	mg/kg	180	< 50	-	59
BTEX	L					
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	98	100	-	75
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 100	< 50	-	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	-	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5

Client Sample ID Sample Matrix			^{G01} BH01 0-0.2M Soil	BH01 0.9-1M Soil	BH01 2.5M Soil	BH01 3M Soil
•						
Eurofins Sample No.			N21-De52382	N21-De52383	N21-De52384	N21-De52385
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		1				
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	90	99	-	105
p-Terphenyl-d14 (surr.)	1	%	60	85	-	92
Organochlorine Pesticides		-1				
Chlordanes - Total	0.1	mg/kg	< 1	< 0.1	-	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
a-HCH	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
b-HCH	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
d-HCH	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Endosulfan I	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Toxaphene	0.5	mg/kg	< 10	< 0.5	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	< 0.05	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1	< 0.1	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	61	93	-	101
Tetrachloro-m-xylene (surr.)	1	%	91	103	-	108
Polychlorinated Biphenyls		1				
Aroclor-1016	0.1	mg/kg	< 1	< 0.1	_	< 0.1
Aroclor-1221	0.1	mg/kg	< 1	< 0.1	_	< 0.1
Aroclor-1232	0.1	mg/kg	< 1	< 0.1	_	< 0.1
Aroclor-1242	0.1	mg/kg	< 1	< 0.1	_	< 0.1
Aroclor-1248	0.1	mg/kg	< 1	< 0.1	_	< 0.1
Aroclor-1254	0.1	mg/kg	< 1	< 0.1	_	< 0.1
Aroclor-1260	0.1	mg/kg	< 1	< 0.1	_	< 0.1
Total PCB*	0.1	mg/kg	< 1	< 0.1	_	< 0.1
Dibutylchlorendate (surr.)	1	%	61	93	_	101
Tetrachloro-m-xylene (surr.)	1	%	91	103	_	101
Total Recoverable Hydrocarbons - 2013 NEPM		,0				100
TRH >C10-C16	50	mg/kg	< 100	< 50	-	< 50
TRH >C10-C10 TRH >C16-C34	100	mg/kg	< 200	< 100	-	< 100
TRH >C16-C34 TRH >C34-C40	100		< 200	< 100	-	< 100
TRH >C10-C40 (total)*	100	mg/kg mg/kg	< 200	< 100	-	< 100

Client Sample ID Sample Matrix Eurofins Sample No.			^{G01} BH01 0-0.2M Soil N21-De52382	BH01 0.9-1M Soil N21-De52383	BH01 2.5M Soil N21-De52384	BH01 3M Soil N21-De52385
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	6.0	< 2	-	2.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	< 0.4
Chromium	5	mg/kg	14	< 5	-	7.1
Copper	5	mg/kg	16	< 5	-	6.4
Lead	5	mg/kg	13	< 5	-	26
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Nickel	5	mg/kg	8.9	< 5	-	6.9
Zinc	5	mg/kg	58	12	-	170
% Moisture	1	%	7.8	1.8	-	16
Acid Sulfate Soils Field pH Test		·				
pH-F (Field pH test)*	0.1	pH Units	-	8.6	9.0	-
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	-	7.0	7.5	-
Reaction Ratings* ^{S05}	0	-	-	1.0	1.0	-

Client Sample ID Sample Matrix			BH01 3.5M Soil	BH01 5M Soil	BH01 6.5M Soil	BH01 8.5M Soil
Eurofins Sample No.			N21-De52386	N21-De52387	N21-De52388	N21-De52389
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	8.3	8.6	6.8	8.6
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	4.9	7.6	2.5	5.9
Reaction Ratings* ^{S05}	0	-	3.0	4.0	4.0	1.0

Client Sample ID Sample Matrix Eurofins Sample No.			BH02 1M Soil N21-De52391	BH02 2M Soil N21-De52392	BH02 4M Soil N21-De52393	BH02 6.5M Soil N21-De52394
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	-	-
TRH C10-C14	20	mg/kg	< 20	< 20	-	-
TRH C15-C28	50	mg/kg	< 50	< 50	-	-
TRH C29-C36	50	mg/kg	< 50	< 50	-	-
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	-	-
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	-
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	-	-
4-Bromofluorobenzene (surr.)	1	%	51	98	-	-

Client Sample ID			BH02 1M	BH02 2M	BH02 4M	BH02 6.5M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-De52391	N21-De52392	N21-De52393	N21-De52394
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	-
TRH C6-C10	20	mg/kg	< 20	< 20	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	-	-
Polycyclic Aromatic Hydrocarbons	·					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	116	87	-	-
p-Terphenyl-d14 (surr.)	1	%	101	110	-	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	-
а-НСН	0.05	mg/kg	< 0.05	< 0.05	-	-
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
b-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
d-HCH	0.05	mg/kg	< 0.05	< 0.05	-	-
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	-
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	-
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	-
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	-	-
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	-	-

Client Sample ID			BH02 1M	BH02 2M	BH02 4M	BH02 6.5M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			N21-De52391	N21-De52392	N21-De52393	N21-De52394
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	_
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	108	109	-	-
Tetrachloro-m-xylene (surr.)	1	%	122	96	-	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	-	_
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	-	-
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	-	-
Dibutylchlorendate (surr.)	1	%	108	109	-	-
Tetrachloro-m-xylene (surr.)	1	%	122	96	-	-
Total Recoverable Hydrocarbons - 2013 NEP	M Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	-	-
TRH >C16-C34	100	mg/kg	< 100	< 100	-	-
TRH >C34-C40	100	mg/kg	< 100	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	-	-
Heavy Metals						
Arsenic	2	mg/kg	< 2	3.2	-	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	-
Chromium	5	mg/kg	5.6	28	-	-
Copper	5	mg/kg	< 5	16	-	-
Lead	5	mg/kg	7.3	39	-	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	-
Nickel	5	mg/kg	< 5	23	-	-
Zinc	5	mg/kg	61	260	-	-
	I					
% Moisture	1	%	20	22	-	-
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	8.5	8.5	9.1	8.7
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	8.1	5.5	2.3	8.6
Reaction Ratings* ^{S05}	0	-	4.0	4.0	4.0	4.0

Client Sample ID Sample Matrix			BH02 8.5M Soil	BH02 9.5M Soil	BH02 0-0.2M Soil
				N21-De52396	N21-De52406
Eurofins Sample No.			N21-De52395		
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Frac	1				
TRH C6-C9	20	mg/kg	-	-	< 20
TRH C10-C14	20	mg/kg	-	-	< 20
TRH C15-C28	50	mg/kg	-	-	< 50
TRH C29-C36	50	mg/kg	-	-	< 50
TRH C10-C36 (Total)	50	mg/kg	-	-	< 50
втех					
Benzene	0.1	mg/kg	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	< 0.1
Xylenes - Total*	0.3	mg/kg	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	93
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	< 50
TRH C6-C10	20	mg/kg	-	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	-	< 20
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	122
p-Terphenyl-d14 (surr.)	1	%	-	-	138
Organochlorine Pesticides	1				
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	< 0.05
a-HCH	0.05	mg/kg	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	< 0.05
b-HCH	0.05	mg/kg	-	-	< 0.05

Client Sample ID Sample Matrix			BH02 8.5M Soil	BH02 9.5M Soil	BH02 0-0.2M Soil
Eurofins Sample No.			N21-De52395	N21-De52396	N21-De52406
•					
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit			-
Organochlorine Pesticides		1			
d-HCH	0.05	mg/kg	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	< 0.05
g-HCH (Lindane)	0.05	mg/kg	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05
Methoxychlor	0.05	mg/kg	-	-	< 0.05
Toxaphene	0.5	mg/kg	-	-	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	143
Tetrachloro-m-xylene (surr.)	1	%	_	-	122
Polychlorinated Biphenyls		,,			
Aroclor-1016	0.1	mg/kg	-	_	< 0.1
Aroclor-1221	0.1	mg/kg	-	-	< 0.1
Aroclor-1221 Aroclor-1232	0.1	mg/kg	-	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	-	< 0.1
Aroclor-1254 Aroclor-1260	0.1		-	-	< 0.1
Total PCB*		mg/kg		-	
	0.1	mg/kg	-		< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	143
Tetrachloro-m-xylene (surr.)	1	%	-	-	122
Total Recoverable Hydrocarbons - 2013 NEPM Fra					
TRH >C10-C16	50	mg/kg	-	-	< 50
TRH >C16-C34	100	mg/kg	-	-	< 100
TRH >C34-C40	100	mg/kg	-	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	-	< 100
Heavy Metals		1			
Arsenic	2	mg/kg	-	-	< 2
Cadmium	0.4	mg/kg	-	-	< 0.4
Chromium	5	mg/kg	-	-	< 5
Copper	5	mg/kg	-	-	< 5
Lead	5	mg/kg	-	-	< 5
Mercury	0.1	mg/kg	-	-	< 0.1
Nickel	5	mg/kg	-	-	< 5
Zinc	5	mg/kg	-	-	25
21110					

Client Sample ID Sample Matrix			BH02 8.5M Soil	BH02 9.5M Soil	BH02 0-0.2M Soil
Eurofins Sample No.			N21-De52395	N21-De52396	N21-De52406
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit			
Acid Sulfate Soils Field pH Test					
pH-F (Field pH test)*	0.1	pH Units	9.2	8.8	-
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	7.1	7.2	-
Reaction Ratings* ^{S05}	0	-	3.0	1.0	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Jan 11, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Jan 11, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 11, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Jan 11, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Jan 11, 2022	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Jan 11, 2022	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Sydney	Jan 11, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Polychlorinated Biphenyls	Sydney	Jan 11, 2022	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Acid Sulfate Soils Field pH Test	Brisbane	Jan 07, 2022	7 Days
- Method: LTM-GEN-7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests			
% Moisture	Sydney	Dec 23, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

	eurofi	ns			Eurofins Environme ABN: 50 005 085 521	ent Te	sting A	Austra	lia Pty	Ltd			Eurofins ARL Pty Ltd ABN: 91 05 0159 898			
web: w	vw.eurofins.com.au	Envi	ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261 Site # 125	00 Lane Cove West NSW 2066		1. N 066 P 0 N	risbane /21 Smallwood Place lurarrie QLD 4172 hone : +61 7 3902 4600 IATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290			
	npany Name: dress:	GHD Pty Ltd 3/24 Honeys Newcastle NSW 2300	NEWCASTL uckle Dve	E			Re	rder N eport hone: ax:	#:	(352456 02 4979 9999 02 4979 9988		Received: Due: Priority: Contact Name:	Dec 22, 2021 8:30 Jan 7, 2022 10 Day Alison Monkley	АМ	
	ject Name: ject ID:	KOORAGAN 12552168	IG ISLAND B	ILLBOARD GE	EOTECH/CONTAM								Eurofins Analytical Se	ervices Manager : Ar	ndrew Black	
		Sa	mple Detail			HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9						
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4							-					
		- NATA # 1261 \$				Х	X		X	Х	4					
		y - NATA # 1261						Х			4					
		/ - NATA # 1261)							4					
		NATA # 2377 Sit	te # 23/0				+				4					
No	nal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID						-					
1	BH01 0-0.2M	Dec 16, 2021	Time	Soil	N21-De52382		X		x	x	+					
2	BH01 0-0.2M BH01 0.9-1M	Dec 16, 2021 Dec 16, 2021		Soil	N21-De52383		X	Х	X	x	1					
	BH01 2.5M	Dec 16, 2021		Soil	N21-De52384			X			1					
4	BH01 3M	Dec 16, 2021		Soil	N21-De52385		x		x	Х	1					
5	BH01 3.5M	Dec 16, 2021		Soil	N21-De52386			Х			1					
6	BH01 5M	Dec 16, 2021		Soil	N21-De52387			х]					
	BH01 6.5M	Dec 16, 2021		Soil	N21-De52388			Х								
7								V			1					
7 8	BH01 8.5M	Dec 16, 2021		Soil	N21-De52389			Х								

			Eurofins Environme ABN: 50 005 085 521	nt Tes	sting A	\ustral	lia Pty	Ltd			Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environmen NZBN: 9429046024954	Testing NZ Limited
web: www.eurofins.com.au email: EnviroSales@eurofins.co	Environment	Testing	Welbourne Sydney 6 Monterey Road Unit F3, Building F Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove West NSW 2066 NATA # 1261 Site # 1254 Phone : +61 2 9900 8400 NATA # 1261 Site # 1254 NATA # 1261 Site # 18217		1/ M 066 Pi 0 N/	risbane 21 Smallwood Place urarrie QLD 4172 hone : +61 7 3902 4600 ATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290			
Company Name: Address:	GHD Pty Ltd NEWCASTLE 3/24 Honeysuckle Dve Newcastle NSW 2300	E			Re Ph	rder N eport hone: ax:	#:	C	352456 02 4979 9999 02 4979 9988		Received: Due: Priority: Contact Name:	Dec 22, 2021 8:30 Jan 7, 2022 10 Day Alison Monkley	АМ
Project Name: Project ID:	KOORAGANG ISLAND BI 12552168	LLBOARD GE	OTECH/CONTAM								Eurofins Analytical S	ervices Manager : Ar	ndrew Black
	Sample Detail			HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9					
Melbourne Laborator	y - NATA # 1261 Site # 1254	4		<u> </u>	<u> </u>	<u> </u>			-				
	NATA # 1261 Site # 18217			X	X		Х	Х	-				
	- NATA # 1261 Site # 20794			<u> </u>	<u> </u>	X			-				
Mayfield Laboratory -	NATA # 1261 Site # 25079								-				
Mayfield Laboratory - Perth Laboratory - NA						×			-				
Mayfield Laboratory - Perth Laboratory - NA External Laboratory	NATA # 1261 Site # 25079 TA # 2377 Site # 2370		N04 De52204										
Mayfield Laboratory - Perth Laboratory - NA External Laboratory 10 BH02 1M	NATA # 1261 Site # 25079 TA # 2377 Site # 2370 Dec 16, 2021	Soil	N21-De52391		X	X	X	X	-				
Mayfield Laboratory - Perth Laboratory - NA External Laboratory 10 BH02 1M I 11 BH02 2M I	NATA # 1261 Site # 25079 ATA # 2377 Site # 2370 Dec 16, 2021 Dec 16, 2021	Soil Soil	N21-De52392		X X X	X X X	x	X X X					
Mayfield Laboratory -Perth Laboratory - NAExternal Laboratory10BH02 1M[]11BH02 2M[]12BH02 4M[]	NATA # 1261 Site # 25079 TA # 2377 Site # 2370 Dec 16, 2021 Dec 16, 2021 Dec 16, 2021	Soil Soil Soil	N21-De52392 N21-De52393			X X X X							
Mayfield Laboratory - Perth Laboratory - NA External Laboratory 10 BH02 1M □ 11 BH02 2M □ 12 BH02 4M □ 13 BH02 6.5M □	NATA # 1261 Site # 25079 TA # 2377 Site # 2370 Dec 16, 2021 Dec 16, 2021 Dec 16, 2021 Dec 16, 2021 Dec 16, 2021	Soil Soil Soil Soil	N21-De52392 N21-De52393 N21-De52394			X X X X X							
Mayfield Laboratory - PertH Laboratory - NA External Laboratory 10 BH02 1M □ 11 BH02 2M □ 12 BH02 4M □ 13 BH02 6.5M □ 14 BH02 8.5M □	NATA # 1261 Site # 25079 TA # 2377 Site # 2370 Dec 16, 2021 Dec 16, 2021 Dec 16, 2021 Dec 16, 2021 Dec 16, 2021 Dec 16, 2021 Dec 16, 2021	Soil Soil Soil Soil Soil Soil	N21-De52392 N21-De52393 N21-De52394 N21-De52395			x x x x x x x							
Mayfield Laboratory - PertH Laboratory - NA External Laboratory 10 BH02 1M C 11 BH02 2M C 12 BH02 4M C 13 BH02 8.5M C 14 BH02 9.5M C	NATA # 1261 Site # 25079 TA # 2377 Site # 2370 Dec 16, 2021 Dec 16, 2021	Soil Soil Soil Soil Soil Soil Soil	N21-De52392 N21-De52393 N21-De52394 N21-De52395 N21-De52396			X X X X X							
Mayfield Laboratory - Perth Laboratory - NA External Laboratory 10 BH02 1M □ 11 BH02 2M □ 12 BH02 4M □ 13 BH02 6.5M □ 14 BH02 9.5M □ 15 BH01 0.3-0.5M □	NATA # 1261 Site # 25079 ATA # 2377 Site # 2370 Dec 16, 2021 Dec 16, 2021	Soil Soil Soil Soil Soil Soil Soil Soil	N21-De52392 N21-De52393 N21-De52394 N21-De52395 N21-De52396 N21-De52397			x x x x x x x							
Mayfield Laboratory - Perth Laboratory - NA Exterral Laboratory I I I 10 BH02 1M I I 11 BH02 2M I I 12 BH02 4M I I 13 BH02 6.5M I I 14 BH02 9.5M I I 15 BH02 9.5M I I 16 BH01 0.3-0.5M I I 17 BH01 1.5M I I	NATA # 1261 Site # 25079 ATA # 2377 Site # 2370 Dec 16, 2021 Dec 16, 2021	Soil Soil Soil Soil Soil Soil Soil Soil	N21-De52392 N21-De52393 N21-De52394 N21-De52395 N21-De52396 N21-De52397 N21-De52398	Х		x x x x x x x							
Mayfield Laboratory - Pert⊦ Laboratory - NA Exterral Laboratory NA 10 BH02 1M I 11 BH02 2M I 12 BH02 4M I 13 BH02 6.5M I 14 BH02 8.5M I 15 BH02 9.5M I 16 BH01 1.3-0.5M I 17 BH01 1.5M I 18 BH01 2M I	NATA # 1261 Site # 25079 ATA # 2377 Site # 2370 Dec 16, 2021 Dec 16, 2021	Soil Soil Soil Soil Soil Soil Soil Soil	N21-De52392 N21-De52393 N21-De52394 N21-De52395 N21-De52396 N21-De52397			x x x x x x x							

			Eurofins Environme ABN: 50 005 085 521	nt Te	sting	Austra	lia Pty	Ltd			Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment NZBN: 9429046024954	Testing NZ Limited
web: www.eurofins.com.au email: EnviroSales@eurofins.c	b: www.eurofins.com.au ail: EnviroSales@eurofins.com		Phone : +61 3 8564 5000 Lane Cove West NSW 2066		1 N 2066 F 0 N	irisbane /21 Smallwood Place /urarrie QLD 4172 /hone : +61 7 3902 4600 IATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290			
Company Name: Address:	GHD Pty Ltd N 3/24 Honeysu Newcastle NSW 2300				R P	rder I eport hone: ax:	#:		852456 02 4979 9999 02 4979 9988		Received: Due: Priority: Contact Name:	Dec 22, 2021 8:30 Jan 7, 2022 10 Day Alison Monkley	АМ
Project Name: Project ID:	KOORAGANG 12552168	GISLAND BILLBOARD G	EOTECH/CONTAM								Eurofins Analytical S	ervices Manager : Ar	drew Black
Melbourne Laborator		iple Detail		HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9					
Sydney Laboratory -	•			х	x		x	x	-				
Brisbane Laboratory				~		X			-				
Mayfield Laboratory -							1		1				
Perth Laboratory - NA							1		1				
External Laboratory								1	1				
	Dec 16, 2021	Soil	N21-De52402	х			1		1				
22 BH01 0.3-0.5M		Soil	N21-De52403	Х]				
	Dec 16, 2021	Soil	N21-De52404	Х]				
	Dec 16, 2021	Soil	N21-De52405	Х									
	Dec 16, 2021	Soil	N21-De52406		х		х	Х					
25 BH02 0-0.2M				Х									
26 BH02 0-0.2M [Dec 16, 2021	Soil	N21-De52407	~				1	1				
26 BH02 0.4-0.5M	Dec 16, 2021 Dec 16, 2021	Soil Soil	N21-De52407 N21-De52408	X									
26 BH02 0.4-0.5M [27 BH02 1.5M [
26 BH02 0.4-0.5M I 27 BH02 1.5M I 28 BH02 3M I	Dec 16, 2021	Soil	N21-De52408	х					-				
26 BH02 0.4-0.5M I 27 BH02 1.5M I 28 BH02 3M I 29 BH02 5M I	Dec 16, 2021 Dec 16, 2021	Soil Soil	N21-De52408 N21-De52409	X X					-				

web: www.eurofins.com.au	Company Name: GHD Pty Ltd NEWCASTLE Address: 3/24 Honeysuckle Dve Newcastle NSW 2300 Project Name: KOORAGANG ISLAND BILLBOARD GEOTECH/CONTA			S U 175 1() La 4 P	ydney Init F3, E 6 Mars I ane Cov hone : + IATA # 1 NATA # 1 OI R(Building Road ve West	9 F t NSW 2 900 8400 te # 182 No.:	2066 2066 217	Brisbane /21 Smallwood Place Jurarrie QLD 4172 Yone : +61 7 3902 4600 VATA # 1261 Site # 20794 852456 02 4979 9999 02 4979 9988	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Phone: - 61 8 6253 4444 NATA # 2377 Site # 2370 Received: Due: Priority: Contact Name:	Eurofins Environment NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327 Dec 22, 2021 8:30 Jan 7, 2022 10 Day Alison Monkley	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290
Project Name: Project ID:	KOORAGANG ISLA 12552168	ND BILLBOARD G	GEOTECH/CONTAM								Eurofins Analytical S	ervices Manager : Ar	ndrew Black
	Sample D	etail		HOLD	Polychlorinated Biphenyls	Acid Sulfate Soils Field pH Test	Moisture Set	Eurofins Suite B9					
Melbourne Laborato	ry - NATA # 1261 Site	# 1254											
Sydney Laboratory -	NATA # 1261 Site # 1	8217		Х	X		X	X	4				
•	- NATA # 1261 Site #					Х	<u> </u>		4				
Mayfield Laboratory	- NATA # 1261 Site # :	25079					─		4				
Perth Laboratory - N	ATA # 2377 Site # 237	70					<u> </u>		4				
External Laboratory							<u> </u>		4				
32 BH02 0.4-0.5M		Soil	N21-De52413	Х			<u> </u>		4				
	Dec 16, 2021	Soil	N21-De52414	Х			<u> </u>		4				
	Dec 16, 2021	Soil	N21-De52415	Х			<u> </u>		4				
	Dec 16, 2021	Soil	N21-De52416	Х			 		4				
	Dec 16, 2021	Soil	N21-De52417	Х			<u> </u>		4				
DUP02	Dec 16, 2021	Soil	N21-De52418	х			<u> </u>						
38 BH02 0.4-0.5M DUP02	Dec 16, 2021	Soil	N21-De52419	х									
Test Counts				23	6	12	6	6					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

•		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Terma	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	US Department of Defense Quality Systems Manual Version 5.4
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				-		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	6					
TRH C6-C9	mg/kg	< 20		20	Pass	
TRH C10-C14	mg/kg	< 20		20	Pass	
TRH C15-C28	mg/kg	< 50		50	Pass	
TRH C29-C36	mg/kg	< 50		50	Pass	
Method Blank						
BTEX						
Benzene	mg/kg	< 0.1		0.1	Pass	
Toluene	mg/kg	< 0.1		0.1	Pass	
Ethylbenzene	mg/kg	< 0.1		0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2		0.2	Pass	
o-Xylene	mg/kg	< 0.1		0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3		0.3	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	5					
Naphthalene	mg/kg	< 0.5		0.5	Pass	
TRH C6-C10	mg/kg	< 20		20	Pass	
Method Blank	1	= •	I I			
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	mg/kg	< 0.5		0.5	Pass	
Acenaphthylene	mg/kg	< 0.5		0.5	Pass	
Anthracene	mg/kg	< 0.5		0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5		0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5		0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5		0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5		0.5	Pass	
Chrysene	mg/kg	< 0.5		0.5	Pass	
Dibenz(a.h)anthracene		< 0.5		0.5	Pass	
Fluoranthene	mg/kg	< 0.5		0.5	Pass	
Fluorene	mg/kg	< 0.5		0.5	Pass	
	mg/kg					
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5		0.5 0.5	Pass	
Naphthalene	mg/kg	< 0.5		0.5	Pass Pass	
Phenanthrene	mg/kg	< 0.5				
Pyrene Nother Learning	mg/kg	< 0.5		0.5	Pass	
Method Blank		1	[[[1	
Organochlorine Pesticides		.01		0.1	Deee	
Chlordanes - Total	mg/kg	< 0.1		0.1	Pass	
4.4'-DDD	mg/kg	< 0.05		0.05	Pass	
4.4'-DDE	mg/kg	< 0.05		0.05	Pass	
4.4'-DDT	mg/kg	< 0.05		0.05	Pass	
a-HCH	mg/kg	< 0.05		0.05	Pass	
Aldrin	mg/kg	< 0.05		0.05	Pass	
b-HCH	mg/kg	< 0.05		0.05	Pass	
d-HCH	mg/kg	< 0.05		0.05	Pass	
Dieldrin	mg/kg	< 0.05		0.05	Pass	
Endosulfan I	mg/kg	< 0.05		0.05	Pass	
Endosulfan II	mg/kg	< 0.05		0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05		0.05	Pass	
Endrin	mg/kg	< 0.05		0.05	Pass	
Endrin ketone	mg/kg	< 0.05		0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank		· · · · ·			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	Під/ку		100	1 835	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium			0.4		
	mg/kg	< 0.4		Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery		1		1	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	89	70-130	Pass	
TRH C10-C14	%	115	70-130	Pass	
LCS - % Recovery		1		1	
BTEX					
Benzene	%	87	70-130	Pass	
Toluene	%	85	70-130	Pass	
Ethylbenzene	%	82	70-130	Pass	
m&p-Xylenes	%	85	70-130	Pass	
o-Xylene	%	84	70-130	Pass	
Xylenes - Total*	%	85	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	125	70-130	Pass	
TRH C6-C10	%	88	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	87	70-130	Pass	
Acenaphthylene	%	90	70-130	Pass	
Anthracene	%	97	70-130	Pass	
Benz(a)anthracene	%	82	70-130	Pass	
	///		10-100	1 1 4 3 3	1

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene	%	82	70-130	Pass	
Benzo(g.h.i)perylene	%	82	70-130	Pass	
Benzo(k)fluoranthene	%	102	70-130	Pass	
Chrysene	%	86	70-130	Pass	
Dibenz(a.h)anthracene	%	88	70-130	Pass	
Fluoranthene	%	88	70-130	Pass	
Fluorene	%	92	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	90	70-130	Pass	
Naphthalene	%	88	70-130	Pass	
Phenanthrene	%	83	70-130	Pass	
Pyrene	%	89	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	73	70-130	Pass	
4.4'-DDD	%	70	70-130	Pass	
4.4'-DDE	%	72	70-130	Pass	
4.4'-DDT	%	80	70-130	Pass	
а-НСН	%	72	70-130	Pass	
Aldrin	%	75	70-130	Pass	
b-HCH	%	76	70-130	Pass	
d-HCH	%	82	70-130	Pass	
Dieldrin	%	77	70-130	Pass	
Endosulfan I	%	79	70-130	Pass	
Endosulfan II	%	82	70-130	Pass	
Endosulfan sulphate	%	89	70-130	Pass	
Endrin	%	93	70-130	Pass	
Endrin aldehyde	%	77	70-130	Pass	
Endrin ketone	%	85	70-130	Pass	
g-HCH (Lindane)	%	80	70-130	Pass	
Heptachlor	%	72	70-130	Pass	
Heptachlor epoxide	%	75	70-130	Pass	
Hexachlorobenzene	%	76	70-130	Pass	
Methoxychlor	%	77	70-130	Pass	
LCS - % Recovery		1			
Polychlorinated Biphenyls					
Aroclor-1016	%	76	70-130	Pass	
Aroclor-1260	%	96	70-130	Pass	
LCS - % Recovery		1			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	%	110	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic	%	101	80-120	Pass	
Cadmium	%	103	80-120	Pass	
Chromium	%	113	80-120	Pass	
Copper	%	118	80-120	Pass	
Lead	%	100	80-120	Pass	
Mercury	%	103	80-120	Pass	
Nickel	%	120	80-120	Pass	
Zinc	%	113	80-120	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptar Limits	ce Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbo	ns - 1999 NEPM Frac	tions		Result 1			
TRH C6-C9	S22-Ja04649	NCP	%	86	70-130	Pass	
TRH C10-C14	S21-De59667	NCP	%	118	70-130	Pass	
Spike - % Recovery							
BTEX	1	1 1		Result 1			
Benzene	S22-Ja04649	NCP	%	88	70-130	Pass	
Toluene	S22-Ja04649	NCP	%	93	70-130	Pass	
Ethylbenzene	S22-Ja04649	NCP	%	96	70-130		
m&p-Xylenes	S22-Ja04649	NCP	%	97	70-130	Pass	
o-Xylene	S22-Ja04649	NCP	%	98	70-130		
Xylenes - Total*	S22-Ja04649	NCP	%	97	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo				Result 1			
Naphthalene	S22-Ja04649	NCP	%	103	70-130		
TRH C6-C10	S22-Ja04649	NCP	%	85	70-130	Pass	
Spike - % Recovery							ļ
Polycyclic Aromatic Hydrocark				Result 1			
Acenaphthene	S21-De56860	NCP	%	99	70-130		
Acenaphthylene	S21-De56860	NCP	%	113	70-130		
Anthracene	S21-De56860	NCP	%	104	70-130		
Benz(a)anthracene	S21-De47752	NCP	%	75	70-130		
Benzo(a)pyrene	S21-De56860	NCP	%	98	70-130		
Benzo(b&j)fluoranthene	S21-De56860	NCP	%	94	70-130		
Benzo(g.h.i)perylene	S21-De56860	NCP	%	100	70-130		
Benzo(k)fluoranthene	S21-De56860	NCP	%	111	70-130		
Chrysene	S21-De56860	NCP	%	75	70-130		
Dibenz(a.h)anthracene	S21-De56860	NCP	%	103	70-130		
Fluoranthene	S21-De56860	NCP	%	98	70-130		
Fluorene	S21-De56860	NCP	%	106	70-130		
Indeno(1.2.3-cd)pyrene	S21-De56860	NCP	%	106	70-130		
Naphthalene	S21-De56860	NCP	%	101	70-130		
Phenanthrene	S21-De56860	NCP	%	94	70-130		
Pyrene	S21-De56860	NCP	%	98	70-130	Pass	-
Spike - % Recovery							
Organochlorine Pesticides		NOD	<u> </u>	Result 1			
Chlordanes - Total	S21-De49180	NCP	%	81	70-130		
4.4'-DDD	S21-De49180	NCP	%	79	70-130		
4.4'-DDE	S21-De49180	NCP	%	86	70-130		
4.4'-DDT	S21-De49180	NCP	%	73	70-130		
a-HCH	S21-De49180	NCP	%	76	70-130		
Aldrin	S21-De49180	NCP NCP	% %	81	70-130		
b-HCH	S21-De49180	NCP	<u>%</u>	80	70-130		
d-HCH Dioldrin	S21-De49180 S21-De49180	NCP NCP	<u>%</u>	77 83	70-130		
Dieldrin Endosulfan I	S21-De49180	NCP	%	83	70-130		
Endosulfan I	S21-De49180	NCP	%	73	70-130		
Endosulfan sulphate	S21-De49180	NCP	%	82	70-130		
Endosuiran suipnate	S21-De49180	NCP	%	79	70-130		
		NCP	<u>%</u>				
Endrin aldehyde	S21-De49180	NCP	%	75	70-130		
Endrin ketone	S21-De49180 S21-De49180	NCP	%	82 81	70-130		
g-HCH (Lindane) Heptachlor	S21-De49180	NCP	%	81	70-130		
Heptachlor epoxide	S21-De49180	NCP	%	82	70-130		

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Hexachlorobenzene	S21-De49180	NCP	%	80			70-130	Pass	
Methoxychlor	S21-De49180	NCP	%	78			70-130	Pass	
Spike - % Recovery	•								
Polychlorinated Biphenyls				Result 1					
Aroclor-1016	S21-De49180	NCP	%	74			70-130	Pass	
Spike - % Recovery		.					1		
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
TRH >C10-C16	S21-De59667	NCP	%	120			70-130	Pass	
Spike - % Recovery	•								
Heavy Metals				Result 1					
Arsenic	S21-De58108	NCP	%	79			75-125	Pass	
Cadmium	S21-De58108	NCP	%	86			75-125	Pass	
Chromium	S21-De58108	NCP	%	92			75-125	Pass	
Copper	S21-De58108	NCP	%	93			75-125	Pass	
Lead	S21-De58108	NCP	%	96			75-125	Pass	
Mercury	S21-De58108	NCP	%	91			75-125	Pass	
Nickel	S21-De58108	NCP	%	93			75-125	Pass	
Zinc	S21-De58108	NCP	%	93			75-125	Pass	
Spike - % Recovery		<u> </u>							
Polychlorinated Biphenyls				Result 1					
Aroclor-1260	S22-Ja05141	NCP	%	89			70-130	Pass	
		QA					Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate				1			1		
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S22-Ja01773	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S21-De59666	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-De59666	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-De59666	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				1			1		
BTEX	1			Result 1	Result 2	RPD			
Benzene	S22-Ja01773	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S22-Ja01773	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S22-Ja01773	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S22-Ja01773	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S22-Ja01773	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S22-Ja01773	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				i			1	r	
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S22-Ja01773	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S22-Ja01773	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				1			1		
Polycyclic Aromatic Hydrocarbons	s	,		Result 1	Result 2	RPD			
Acenaphthene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%		1

Duplicate									
Polycyclic Aromatic Hydrocarbon	s			Result 1	Result 2	RPD			
Indeno(1.2.3-cd)pyrene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	021 0000001		mg/ng	1 0.0	¥ 0.0	1	0070	1 400	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
	S21-De58631	NCP					30%		
Endosulfan I Endosulfan II		NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-De58631 S21-De58631	NCP	mg/kg mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	<1 <1	30%	Pass Pass	
· · · · · · · · · · · · · · · · · · ·									
Endrin	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-De58631	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S21-De58631	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Desult 1	Desult 0				
Polychlorinated Biphenyls	004 5 50004	NOD	4	Result 1	Result 2	RPD	0.001		
Aroclor-1016	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S21-De58631	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				D 14					
Total Recoverable Hydrocarbons			4	Result 1	Result 2	RPD	0.00/		
TRH >C10-C16	S21-De59666	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-De59666	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-De59666	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				I			1	1	
Heavy Metals		1		Result 1	Result 2	RPD			
Arsenic	S21-De58038	NCP	mg/kg	5.6	8.0	36	30%	Fail	Q15
Cadmium	S21-De58038	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-De58038	NCP	mg/kg	9.3	12	21	30%	Pass	
Copper	S21-De58038	NCP	mg/kg	28	39	32	30%	Fail	Q15
Lead	S21-De58038	NCP	mg/kg	14	18	27	30%	Pass	
Mercury	S21-De58038	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-De58038	NCP	mg/kg	5.3	7.1	29	30%	Pass	
Zinc	S21-De58038	NCP	mg/kg	27	37	29	30%	Pass	
Duplicate					1				
		1	1	Result 1	Result 2	RPD			
% Moisture	N21-De51889	NCP	%	17	19	8.0	30%	Pass	

Duplicate												
Acid Sulfate Soils Field pH Test	Result 1	Result 2	RPD									
pH-F (Field pH test)*	pH Units	8.6	8.7	pass	30%	Pass						
Duplicate												
Acid Sulfate Soils Field pH Test	Result 1	Result 2	RPD									
pH-F (Field pH test)*	N21-De52389	CP	pH Units	8.6	8.8	pass	30%	Pass				

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G01	The LORs have been raised due to matrix interference
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.
	Field Screen uses the following first reting to alcosify the rate the complex reported to the perovide: 1.0: No reportion to alight 2.0: Moderate reportion 2.0: Streng reportion with

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction.

Authorised by:

Emma Beesley	Analytical Services Manager
Andrew Sullivan	Senior Analyst-Organic (NSW)
John Nguyen	Senior Analyst-Metal (NSW)
Myles Clark	Senior Analyst-SPOCAS (QLD)
Roopesh Rangarajan	Senior Analyst-Volatile (NSW)

1. Juli

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

- * Indicates NATA accreditation does not cover the performance of this service
- Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

5 DAY TAT ADDITIONAL ANALYSIS:FW: Eurofins Test Results, Invoice - Report 852456 : Site KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM (12552168)

Andrew Black < Andrew Black@eurofins.com>

Tue 2/15/2022 11:27 AM

To: #AU03_EnviroSampleBris <EnviroSampleBris@eurofins.com>

INFO: INTERNAL EMAIL - Sent from your own Eurofins email domain.

5 day TAT additional analysis thanks team for CrSuite

Andrew Black Analytical Services Manager

Eurofins | Environment Testing Australia Pty Ltd

Unit 7 7 Friesian Close SANDGATE, NSW, 2304 AUSTRALIA Phone: +61 2 9900 8490 Mobile: +61 410 220 750 Email: <u>AndrewBlack@eurofins.com</u> Website: eurofins.com.au/environmental-testing

This e-mail including its attachments may contain confidential and proprietary information. Any unauthorized disclosure or use of this e-mail including its attachments is prohibited and may be prosecuted. If you are not the intended recipient, please inform the sender by an e-mail reply and delete the message. Transmission by e-mail is not secure and can result in errors or omissions in the content of the message. Despite state-of-the-art precautions we cannot guarantee that e-mails and attachments are free from viruses. We accept no liability for viruses or any transmission-related errors and omissions. You need to always virus-check any e-mails and attachments.

Eurofins companies are independent legal entities that are bound only by members of their management bodies. No other persons have representation power unless specifically authorised by proxy or other legal means.

For sample receipt enquiries (eg. SRAs, changes to analysis) please contact <u>EnvirosampleNSW@eurofins.com</u> or 02 9900 8421 (7am – 9pm). For despatch enquiries (eg. courier bookings, bottle orders) please contact <u>ÅU04_Despatch_SYD@eurofins.com</u> or 0488 400 929 (8am – 4pm).

From: Alison Monkley <Alison.Monkley@ghd.com> Sent: Tuesday, 15 February 2022 12:26 PM To: Andrew Black <AndrewBlack@eurofins.com> Subject: Eurofins Test Results, Invoice - Report 852456 : Site KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM (12552168)

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Andrew,

Can you please organise ASS CRS for the following samples

DHJAO13

```
        BH01 3.5m
        De 52386

        BH01 6.5m
        De 52388

        BH02 2m
        De 52392

        BH02 4m
        De 52393
```

BSDE33ZH=331

Thanks

AI

Alison Monkley B.Eng (Env), B.Sc, ME (groundwater)

Business Group Leader – Contamination Assessment and Remediation GHD Proudly employee-owned | ghd.com

Level 3, GHD Tower, 24 Honeysuckle Drive, Newcastle, NSW, 2300, Australia D +61 2 4979 9990 M +61 447 108 208 E alison.monkley@ghd.com

→ The Power of Commitment

Connect

Please consider the environment before printing this

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521 Melbourne 6 Monterey Road

Dandenong South VIC 3175 16 Mars Road Phone : +61 3 8564 5000 Lane Cove We NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place NATA # 1261 Site # 18217

 Muraris Road
 Muraris QLD 4172

 Lane Cove West NSW 2066
 Phone : +61 7 3902 4600

 Phone : +61 2 9900 8400
 NATA # 1261 Site # 10017
 NATA # 1261 Site # 20794 www.eurofins.com.au

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Limited ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

NZBN: 9429046024954 Auckland

EnviroSales@eurofins.com

35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290

Sample Receipt Advice

GHD Pty Ltd NEWCASTLE
Alison Monkley
KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM
12552168
5 Day
Feb 15, 2022 11:27 AM
864020

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table. 1

Newcastle

4/52 Industrial Drive

Mayfield East NSW 2304

PO Box 60 Wickham 2293

NATA # 1261 Site # 25079

Phone : +61 2 4968 8448

- Sample Temperature of chilled sample on the batch as recorded by Eurofins Sample Receipt : 17.9 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- 1 Sample containers for volatile analysis received with zero headspace.
- X Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone : (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Alison Monkley - alison.monkley@ghd.com.au.

Note: A copy of these results will also be delivered to the general GHD Pty Ltd NEWCASTLE email address.

Global Leader - Results you can trust

Ceurofins Environment Testing www.eurofins.com.au EnviroSales@eurofins.com ompany Name: ddress: GHD Pty Ltd NEWCASTLE 3/24 Honeysuckle Dve Newcastle NSW 2300	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261 Site # 125	U 175 1 0 L 4 P	6 Mars F ane Cov Phone : +		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293	ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106	Auckland 35 O'Rorke Road Penrose, Auckland 1061	Christchurch 43 Detroit Drive
ddress: 3/24 Honeysuckle Dve Newcastle NSW 2300						Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Phone : +64 9 526 45 51 IANZ # 1327	Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
			Re Pr	der No.: port #: none: x:	864020 02 4979 9999 02 4979 9988		Received: Due: Priority: Contact Name:	Feb 15, 2022 11:27 Feb 22, 2022 5 Day Alison Monkley	7 AM
roject Name: KOORAGANG ISLAND BILLBOARD roject ID: 12552168	GEOTECH/CONTAM					1	Eurofins Analytical Se	ervices Manager : Ar	drew Black
Sample Detail		Chromium Reducible Sulfur Suite	Moisture Set						
bourne Laboratory - NATA # 1261 Site # 1254									
dney Laboratory - NATA # 1261 Site # 18217									
sbane Laboratory - NATA # 1261 Site # 20794		х	x						
yfield Laboratory - NATA # 1261 Site # 25079									
th Laboratory - NATA # 2377 Site # 2370									
ernal Laboratory									
Sample ID Sample Date Sampling Matrix	LAB ID								
BH01 3.5M Dec 16, 2021 Soil	B22-Fe32649	х	X						
BH01 6.5M Dec 16, 2021 Soil	B22-Fe32650	Х	X						
BH02 2M Dec 16, 2021 Soil	B22-Fe32651	Х	X						
BH02 4M Dec 16, 2021 Soil	B22-Fe32652	Х	X						
st Counts		4	4						

עיוייא

ac-MRA

4 Julia

NATA

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

NATA Accredited Accreditation Number 1261 Site Number 20794

GHD Pty Ltd 3/24 Honeysuckle Dve Newcastle NSW 2300

Attention:

Alison Monkley

Report Project name Project ID Received Date 864020-S-V2 KOORAGANG ISLAND BILLBOARD GEOTECH/CONTAM 12552168 Feb 15, 2022

Client Sample ID					DUIDO OM	DUIDO 414
Sample Matrix			BH01 3.5M Soil	BH01 6.5M Soil	BH02 2M Soil	BH02 4M Soil
•						
Eurofins Sample No.			B22-Fe32649	B22-Fe32650	B22-Fe32651	B22-Fe32652
Date Sampled			Dec 16, 2021	Dec 16, 2021	Dec 16, 2021	Dec 16, 2021
Test/Reference	LOR	Unit				
Actual Acidity (NLM-3.2)	1					
pH-KCL (NLM-3.1)	0.1	pH Units	8.3	6.5	8.1	8.0
Titratable Actual Acidity (NLM-3.2)	0.003	% pyrite S	< 0.003	< 0.003	< 0.003	< 0.003
Titratable Actual Acidity (NLM-3.2)	2	mol H+/t	< 2	< 2	< 2	< 2
Potential Acidity - Chromium Reducible Sulfur						
Chromium Reducible Sulfur (s-SCr) (NLM-2.1) ^{S04}	0.005	% S	0.076	0.074	0.16	0.55
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	3	mol H+/t	47	46	100	340
Extractable Sulfur						
Sulfur - KCI Extractable	0.005	% S	N/A	N/A	N/A	N/A
HCI Extractable Sulfur	0.005	% S	N/A	N/A	N/A	N/A
Retained Acidity (S-NAS)						
Net Acid soluble sulfur (SNAS) NLM-4.1	0.02	% S	N/A	N/A	N/A	N/A
Net Acid soluble sulfur (s-SNAS) NLM-4.1 ^{S02}	0.02	% S	N/A	N/A	N/A	N/A
Net Acid soluble sulfur (a-SNAS) NLM-4.1	10	mol H+/t	N/A	N/A	N/A	N/A
HCI Extractable Sulfur Correction Factor	1	factor	2.0	2.0	2.0	2.0
Acid Neutralising Capacity (ANCbt)						
Acid Neutralising Capacity - (ANCbt) (NLM-5.2)	0.01	% CaCO3	1.5	N/A	2.0	1.4
Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) ^{S03}	0.02	% S	0.48	N/A	0.63	0.44
Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2)	2	mol H+/t	300	N/A	390	270
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
Net Acidity (Including ANC)						
CRS Suite - Net Acidity - NASSG (Including ANC)	0.02	% S	< 0.02	0.07	< 0.02	0.26
CRS Suite - Net Acidity - NASSG (Including ANC)	10	mol H+/t	< 10	46	< 10	160
CRS Suite - Liming Rate - NASSG (Including ANC) ^{S01}	1	kg CaCO3/t	< 1	3.5	< 1	12
Extraneous Material						
<2mm Fraction	0.005	g	30	24	26	30
>2mm Fraction	0.005	g	< 0.005	< 0.005	< 0.005	< 0.005
Analysed Material	0.1	%	100	100	100	100
Extraneous Material	0.1	%	< 0.1	< 0.1	< 0.1	< 0.1
Net Acidity (Excluding ANC)						
CRS Suite - Net Acidity - NASSG (Excluding ANC)	0.02	% S	0.08	0.07	0.16	0.55
CRS Suite - Net Acidity - NASSG (Excluding ANC)	10	mol H+/t	47	46	100	340
CRS Suite - Liming Rate - NASSG (Excluding ANC)	1	kg CaCO3/t	3.6	3.5	7.6	26
% Moisture	1	%	22	18	35	32

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chromium Reducible Sulfur Suite			
Chromium Suite	Brisbane	Feb 17, 2022	6 Week
- Method: LTM-GEN-7070 Chromium Reducible Sulfur Suite			
Extraneous Material	Brisbane	Feb 17, 2022	6 Week
- Method: LTM-GEN-7050/7070			
Chromium Suite - NASSG (Excluding ANC)	Brisbane	Mar 08, 2022	6 Week
- Method: LTM-GEN-7070 Chromium Reducible Sulfur Suite			
% Moisture	Brisbane	Feb 17, 2022	14 Days
Mathadi LTM CEN 2090 Majatura			

- Method: LTM-GEN-7080 Moisture

ABN: 50 005 085 521							esting /	ustralia Pty Lto	I		Eurofins ARL Pty Ltd ABN: 91 05 0159 898	Eurofins Environment Testing NZ Limited NZBN: 9429046024954		
Environment Testing Control to the second s				Melbourne	L 175 1 0 L 4 F	175 16 Mars Road Lane Cove West NSW 2066		Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 76 Phone : 0800 856 450 IANZ # 1290		
	Company Name: GHD Pty Ltd NEWCASTLE Address: 3/24 Honeysuckle Dve Newcastle NSW 2300 Project Name: KOORAGANG ISLAND BILLBOARD GEOTECH/CONT							rder No.: eport #: none: ix:	864020 02 4979 9999 02 4979 9988		Received: Due: Priority: Contact Name:	Feb 15, 2022 11:27 Feb 22, 2022 5 Day Alison Monkley	Ϋ́ AM	
	oject Name: oject ID:	KOORAGAN 12552168	IG ISLAND BI	LLBOARD GE	OTECH/CONTAM						Eurofins Analytical S	ervices Manager : Ar	drew Black	
		Sa	mple Detail			Chromium Reducible Sulfur Suite	Moisture Set							
Nelb	ourne Laborato	ry - NATA # 12	61 Site # 1254	4										
	ney Laboratory -													
	bane Laboratory					Х	Х							
	ield Laboratory													
Pertl	h Laboratory - N	ATA # 2377 Sit	te # 2370											
	rnal Laboratory		·											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1		Dec 16, 2021		Soil	B22-Fe32649	Х	X							
2	BH01 6.5M	Dec 16, 2021		Soil	B22-Fe32650	Х	X							
		Dec 16, 2021		Soil	B22-Fe32651	Х	X							
		Dec 16, 2021		Soil	B22-Fe32652	Х	X							
Test	Counts					4	4							

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

erinte		
mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

APHA	American Public Health Association
COC	Chain of Custody
CP	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery									
Actual Acidity (NLM-3.2)									
pH-KCL (NLM-3.1)			%	101			80-120	Pass	
Titratable Actual Acidity (NLM-3.2)			%	95			80-120	Pass	
LCS - % Recovery									
Potential Acidity - Chromium Redu	ucible Sulfur								
Chromium Reducible Sulfur (s-SCr)	(NLM-2.1)		%	104			80-120	Pass	
LCS - % Recovery	•								
Extractable Sulfur									
HCI Extractable Sulfur			%	101			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Actual Acidity (NLM-3.2)				Result 1	Result 2	RPD			
pH-KCL (NLM-3.1)	S22-Fe31816	NCP	pH Units	4.9	4.9	<1	30%	Pass	
Titratable Actual Acidity (NLM-3.2)	S22-Fe31816	NCP	% pyrite S	0.030	0.030	1.0	30%	Pass	
Titratable Actual Acidity (NLM-3.2)	S22-Fe31816	NCP	mol H+/t	20	20	1.0	30%	Pass	
Duplicate						1.0	0070	1 400	
Potential Acidity - Chromium Redu	ucible Sulfur			Result 1	Result 2	RPD			
Chromium Reducible Sulfur (s-SCr)				1 toout 1	rtoount 2	111 0			
(NLM-2.1)	S22-Fe31816	NCP	% S	< 0.005	< 0.005	<1	30%	Pass	
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	S22-Fe31816	NCP	mol H+/t	< 3	< 3	<1	30%	Pass	
Duplicate									
Extractable Sulfur				Result 1	Result 2	RPD			
Sulfur - KCI Extractable	S22-Fe31816	NCP	% S	N/A	N/A	N/A	30%	Pass	
HCI Extractable Sulfur	S22-Fe31816	NCP	% S	N/A	N/A	N/A	30%	Pass	
Duplicate								-	
Retained Acidity (S-NAS)				Result 1	Result 2	RPD			
Net Acid soluble sulfur (SNAS) NLM-4.1	S22-Fe31816	NCP	% S	N/A	N/A	N/A	30%	Pass	
Net Acid soluble sulfur (s-SNAS) NLM-4.1	S22-Fe31816	NCP	% S	N/A	N/A	N/A	30%	Pass	
Net Acid soluble sulfur (a-SNAS) NLM-4.1	S22-Fe31816	NCP	mol H+/t	N/A	N/A	N/A	30%	Pass	
Duplicate									
Acid Neutralising Capacity (ANCbt)			Result 1	Result 2	RPD			
Acid Neutralising Capacity - (ANCbt) (NLM-5.2)	S22-Fe31816	NCP	% CaCO3	N/A	N/A	N/A	30%	Pass	
Acid Neutralising Capacity - (s- ANCbt) (NLM-5.2)	S22-Fe31816	NCP	% S	N/A	N/A	N/A	30%	Pass	
ANC Fineness Factor	S22-Fe31816	NCP	factor	1.5	1.5	<1	30%	Pass	
Duplicate									
Net Acidity (Including ANC)				Result 1	Result 2	RPD			
CRS Suite - Net Acidity - NASSG (Including ANC)	S22-Fe31816	NCP	% S	0.03	0.03	1.0	30%	Pass	
CRS Suite - Net Acidity - NASSG (Including ANC)	S22-Fe31816	NCP	mol H+/t	20	20	1.0	30%	Pass	
CRS Suite - Liming Rate - NASSG (Including ANC)	S22-Fe31816	NCP	kg CaCO3/t	1.5	1.5	1.0	30%	Pass	
Duplicate	022-1 001010		ny CaCO3/l	1.0	1.0	1.0	50%	1 455	
Dupileate				Result 1	Result 2	RPD			
% Moisture	B22 E026224	NCD	0/.				200/	Paga	
% Moisture	B22-Fe26334	NCP	%	23	23	<1	30%	Pass	

Comments

V2- new version to include the ANC liming on all samples as per client request.

Eurofins | Environment Testing accreditation number 1261, site 18217 is currently in progress of a controlled transition to a new custom built location at 179 Magowar Road, Girraween, NSW 2145. All results on this report denoted as being performed by Eurofins | Environment Testing Unit F3, Building F, 16 Mars road, Lane Cove West, NSW 2066, corporate site 18217, will have been performed on either Lane Cove or new Girraween site

N/A

Yes

Yes

Yes

Yes

Yes

No

Sample Integrity Custody Seals Intact (if used) Attempt to Chill was evident Sample correctly preserved Appropriate sample containers have been used Sample containers for volatile analysis received with minimal headspace Samples received within HoldingTime Some samples have been subcontracted

Qualifier Codes/Comments

Code Description

S01	Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil' multiply 'reported results' x 'wet bulk density of soil in t/m3'
S02	Retained Acidity is Reported when the pHKCl is less than pH 4.5
S03	Acid Neutralising Capacity is only required if the pHKCI if greater than or equal to pH 6.5
S04	Acid Sulfate Soil Samples have a 24 hour holding time unless frozen or dried within that period

Authorised by:

Andrew Black Myles Clark Analytical Services Manager Senior Analyst-SPOCAS (QLD)

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Appendix E Contamination laboratory result summary tables

	Inorg				Me	etals							BTEXN						TRH ·	NEPM	2013											PAHs	- stand	dard 16								
	Moisture Content (%)	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	Naphthalene	F1 (C6-C10 minus BTEX)	C6-C10 Fraction	F2 (>C10-C16 minus Naphthalene)	>C10-C16 Fraction	F3 (>C16-C34 Fraction)	F4 (>C34-C40 Fraction)	>C10-C40 (Sum of Total)	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo[b+]]fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-c,d)pyrene	Phenanthrene	Pyrene	PAHs (Sum	Total 8 PAHs TEQ)(zero LC		Total 8 PAHs (as BaP TEQ)(full LOR) - Lab Calc
	%			mg/kg	mg/kg	mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				mg/kg	mg/kg	mg/kg			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg ı	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg i	mg/kg ı	mg/kg	mg/kg
LOR	1	2	0.4	5	5	5	0.1	5	5	0.1	0.1	0.1	0.1	0.2	0.3		20	20	50	50	100	100	100	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
NEPM 2013 EIL-Commercial/Industrial		160		530	830	1,800	l.	290	620							370																										
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Fine Soil										95	135	185			95		215			170	2,500	6,600						1.4														
NEPM 2013 Table 1A(1) HIL D Comm/Ind			900	3,600	240,000	1,500	730	6,000	400,000																														4,000	40	40	40
NEPM 2013 Table 1A(3) HSL D Comm/Ind Soil for Vapour Intrusi	ion, Sa	and																																								
0m - 1m										3	NL	NL			230	NL	260		NL																							
1m - 2m										3	NL	NL			NL	NL	370		NL																							
2m - 4m										3	NL	NL			NL	NL	630		NL																							
>4m										3	NL	NL			NL	NL	NL		NL																							

				Lab																																										
Location				Report																																										
Code	Date	Field ID	Depth	Number																																										
BH01	16/12/2021	1 BH01 0-0.2N	1 0-0.2M	852456	7.8	6	<0.4	14	16	13	<0.1	8.9	58	<0.1	<0.1	<0.1	<0.1	< 0.2	< 0.3	< 0.5	<20	<20	<100	<100	<200	<200	<200	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5 <	:0.5 <	0.5 <0.	5 < 0.5	< 0.5	ō <0.	5 <0.	.5 <0	J.5 <c< th=""><th>).5 <(</th><th>0.5 <</th><th>< 0.5</th><th>0.6</th><th>1.2</th></c<>).5 <(0.5 <	< 0.5	0.6	1.2
BH01		BH01 0.9-1N	1 0.9-1M	852456	1.8	<2	<0.4	<5	<5	<5	<0.1	<5	12	<0.1	<0.1	<0.1	<0.1	<0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100	<100	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5 <	:0.5 <	0.5 <0.	5 < 0.5	5 < 0.5	5 <0.	5 <0.	.5 <0	J.5 <c< th=""><th>).5 <(</th><th>0.5 <</th><th><0.5</th><th>0.6</th><th>1.2</th></c<>).5 <(0.5 <	<0.5	0.6	1.2
BH01		BH01 3M	3M	852456	16	2.2	<0.4	7.1	6.4	26	<0.1	6.9	170	<0.1	<0.1	<0.1	<0.1	< 0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100	<100	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	:0.5 <	0.5 <0.	5 < 0.5	< 0.5	ō <0.	5 <0.	.5 <0	J.5 <c< th=""><th>).5 <(</th><th>0.5 <</th><th><0.5</th><th>0.6</th><th>1.2</th></c<>).5 <(0.5 <	<0.5	0.6	1.2
BH02		BH02 0-0.2N	1 0-0.2M	852456	13	<2	<0.4	<5	<5	<5	<0.1	<5	25	<0.1	<0.1	<0.1	<0.1	< 0.2	<0.3	< 0.5	<20	<20	<50	<50	<100	<100	<100	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5 <	:0.5 <	0.5 <0.8	5 <0.5	< 0.5	5 <0.	5 <0.	.5 <0).5 <c< th=""><th>).5 <(</th><th>0.5 <</th><th>< 0.5</th><th>0.6</th><th>1.2</th></c<>).5 <(0.5 <	< 0.5	0.6	1.2
BH02		BH02 1M	1M	852456	20	<2	<0.4	5.6	<5	7.3	<0.1	<5	61	<0.1	<0.1	<0.1	<0.1	< 0.2	<0.3	<0.5	<20	<20	<50	<50	<100	<100	<100	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	:0.5 <	0.5 <0.	5 < 0.5	< 0.5	ō <0.	5 <0.	.5 <0	J.5 <c< th=""><th>).5 <(</th><th>0.5 <</th><th><0.5</th><th>0.6</th><th>1.2</th></c<>).5 <(0.5 <	<0.5	0.6	1.2
BH02		BH02 2M	2M	852456	22	3.2	<0.4	28	16	39	<0.1	23	260	<0.1	<0.1	<0.1	<0.1	< 0.2	< 0.3	< 0.5	<20	<20	<50	<50	<100	<100 ·	<100	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5 <	< 0.5 <	0.5 <0.5	5 < 0.5	5 < 0.5	5 <0.	5 <0.	.5 <0).5 <c< th=""><th>).5 <(</th><th>0.5 <</th><th><0.5</th><th>0.6</th><th>1.2</th></c<>).5 <(0.5 <	<0.5	0.6	1.2

							OC Pe	sticides										OC	Pesticio	les							PC	Bs			
	4,4'-DDE	a-BHC	Aldrin	Aldrin + Dieldrin	b-BHC	Chlordane	d-BHC	4'4 DDD	4,4 DDT	DDT+DDE+DDD - Lab Calc	Dieldrin	Endosulfan I (alpha)	Endosulfan II (beta)	Endosulfan Sulfate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Methoxychlor	Toxaphene	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Total)
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg					mg/kg						mg/kg		µg/kg	mg/kg	mg/kg		µg/kg				µg/kg	µg/kg	µg/kg
LOR	0.05	0.05	0.05	0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	50	0.05	0.5	100	100	100	100	100	100	100	100
NEPM 2013 EIL-Commercial/Industrial									640	640																					
NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Fine Soil																															
NEPM 2013 Table 1A(1) HIL D Comm/Ind				45		530				3,600					100				50		80,000	2,500	160								7,000
NEPM 2013 Table 1A(3) HSL D Comm/Ind Soil for Vapour Intrus																															
0m - 1m																															
1m - 2m																															
2m - 4m																															
>4m																															

				Lab																															
Location				Report																															
Code	Date	Field ID	Depth	Number																															
BH01	16/12/2021	BH01 0-0.2M	0-0.2M	852456	<0.5	<0.5	<0.5	< 0.5	<0.5	<1	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<500	<0.5	<10	<1,000	<1,000	<1,000	<1,000	<1,000<1	,000<1		1,000
BH01		BH01 0.9-1M	0.9-1M	852456	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<50	< 0.05	<0.5	<100	<100	<100	<100	<100 <	100 <	<100 <	:100
BH01		BH01 3M	3M	852456	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<50	< 0.05	<0.5	<100	<100	<100	<100	<100 <	100 <	<100 <	100
BH02		BH02 0-0.2M	0-0.2M	852456	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<50	< 0.05	<0.5	<100	<100	<100	<100	<100 <	100 <	<100 <	:100
BH02		BH02 1M	1M	852456	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<50	< 0.05	<0.5	<100	<100	<100	<100	<100 <	100 <	<100 <	:100
BH02		BH02 2M	2M	852456	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<50	< 0.05	<0.5	<100	<100	<100	<100	<100 <	100 <	<100 <	:100

Kooragang Island Billboard Geotechnical and Contamination Assessment

GHD

												TRH	- NEPN	1 PAł	H PAHs	3 -																						
				Metals					BT	EXN		1	999	S	stand	a	0	C Pesti	cides										OC Pe	sticides	3							PCBs
	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Benzene	Toluene	Ethylbenzene	Xylene Total	C6-C9 Fraction	C10-C36 (Sum of Total)	Benzo(a)pyrene	PAHs (Sum of total) - Lab calc	4,4'-DDE	a-BHC	Aldrin	Aldrin + Dieldrin	b-BHC	Chlordane	d-BHC	4,4 DDD	4,4 DDT	DDT+DDE+DDD - Lab Calc	Dieldrin	Endosulfan I (alpha)	Endosulfan II (beta)	Endosulfan Sulfate	Endrin	Endrin aldehyde	Endrin ketone	g-BHC (Lindane)	Heptachlor	Heptachlor epoxide	Hexachlorobenzene	Methoxychlor	l oxapiterie PCBs (Total)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/k	g mg/ł	kg mg/k				g mg/kg								mg/kg	mg/kg	mg/kg	g mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	µg/kg r	mg/kg mg	g/kg µg/kg
LOR	2	0.4	5	5	5	0.1	5	0.1	0.1	0.1	0.3	20	50	0.5	5 0.5	0.05	5 0.05	0.05	0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	50	0.05 0	.5 100
NSW EPA (2014) General Solid Waste CT1 (No Leaching)	100	20	100		100	4	40	10	288	600	1,000	650 ^{#1}	10,000) ^{#1} 0.8	3 200	<50	<50	<50		<50	<50	<50	<50	<50	<50	<50				<50	<50		<50					50,000
NSW EPA (2014) Restricted Solid Waste CT2 (No Leaching)	400	80	400		400	16	160	40	1,152	2,400	4,000	2,600#	40,000)#1 3.2	2 800	<50	<50	<50		<50	<50	<50	<50	<50	<50	<50				<50	<50		<50					50,000

Location Code	E Field ID	Depth	n Lab Rep	ort Nu	mber																																					
BH01	BH01 0-0.2M	0-0.2N	1 852456	6	<0.4	14	16	13	<0.1	8.9	<0.1	<0.1	<0.1	< 0.3	<20	180	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<1	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5 <	< 0.5	< 0.5	< 0.5	<0.5	<0.5	< 0.5 <	0.5 <	500 <0).5 <	10 <1	000
BH01	BH01 0.9-1M	0.9-1N	1 852456	<2	<0.4	<5	<5	<5	<0.1	<5	<0.1	<0.1	<0.1	<0.3	<20	<50	<0.5	<0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	< 0.05	:0.05 <	< 0.05 <	< 0.05 <	< 0.05 <	0.05 <	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05).05 <	:50 <0	.05 <0	J.5 <1	00
BH01	BH01 3M	3M	852456	2.2	<0.4	7.1	6.4	26	<0.1	6.9	<0.1	<0.1	<0.1	< 0.3	<20	59	<0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	< 0.05	:0.05 <	< 0.05 <	< 0.05 <	< 0.05	0.05 <	< 0.05 <	< 0.05 <	< 0.05	< 0.05	< 0.05).05 <	:50 <0	.05 <0	J.5 <1	00
BH02	BH02 0-0.2M	0-0.2N	1 852456	<2	<0.4	<5	<5	<5	<0.1	<5	<0.1	<0.1	<0.1	< 0.3	<20	<50	<0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	< 0.05	:0.05 <	< 0.05 <	< 0.05 <	< 0.05 <	0.05 <	< 0.05	< 0.05 <	< 0.05	< 0.05	< 0.05).05 <	:50 <0	.05 <0	J.5 <1	00
BH02	BH02 1M	1M	852456	<2	<0.4	5.6	<5	7.3	<0.1	<5	<0.1	<0.1	<0.1	<0.3	<20	<50	<0.5	<0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05 <	< 0.05 <	< 0.05	0.05 <	< 0.05	< 0.05 <	< 0.05	< 0.05	< 0.05).05 <	:50 <0	.05 <0	J.5 <1	00
BH02	BH02 2M	2M	852456	3.2	< 0.4	28	16	39	<0.1	23	<0.1	<0.1	<0.1	< 0.3	<20	<50	< 0.5	< 0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.1	< 0.05	< 0.05	< 0.05 <	< 0.05 <	< 0.05 <	< 0.05 <	< 0.05 <	0.05 <	< 0.05 <	< 0.05 <	< 0.05	< 0.05	<0.05 <0).05 <	:50 <0	.05 <0).5 <1	00

General Solid Waste - Less than CT1 or SCC1 Restricted Solid Waste - Exceeds General Solid Waste CT1 or SCC1 Hazardous Waste - Exceeds Restricted Solid Waste CT2 or SCC2

Kooragang Island Billboard Geotechnical and Contamination Assessment

LOR

Table 3 Acid Sulfate Soils Field Indicator Values and CRS Results

			ASS -	Field			NA		Inorganics	Particl Ana		ASS - pH	ASS - Ad	cidity Trail		Potential idity	,	ASS - AN	<u>c</u>		ASS - A	cid Base Ac	counting		ASS - Lii	ming Rate
		pHF	pHFox	pHF - pHFox	Reaction Ratings	HCI Extractable Sulfur Correction Factor	Analysed Material	Extraneous Material	Moisture Content (%)	>2mm Fraction	<2mm Fraction	pHKCI	Titratable Actual Acidity	Titratable Actual Acidity (sulfur units)	Chromium Reducible Sulphur (acidity units)	Chromium Reducible Suffur	Acid Neutralising Capacity (acidity units)	Acid Neutralising Capacity (sulfur units)	Acid Neutralising Capacity	Net Acidity including ACN (acidity units)	Net Acidity including ACN (sulfur units)	Net Acidity excluding ACN (acidity units)	Net Acidity excluding ACN (sulfur units)	ANC Fineness Factor	Liming Rate excluding ACN	Liming Rate including ACN
		pH units	pH units	pH units	-	-	%	%	%	g	g	pH units	mole H+/t		mole H+/t	% S	mole H+/t	% S	% CaCO3			mole H+/t	% S	-	kg CaCO3/t	kg CaCO
		0.1	0.1	0.1	0	1	0.1	0.1	1	0.005	0.005	0.1	2	0.003	3	0.005	2	0.02	0.01	10	0.02	10	0.02		1	1
Date	Lab Report Field ID Depth Number		0.1	0.1	0	1	0.1	0.1	1	0.005	0.005	0.1	2	0.003	3	0.005	2	0.02	0.01	10	0.02	10	0.02		1	1
Date 16/12/202	Field ID Depth Number 1 BH01 0.9-1M 0.9-1M 852456	8.6	7	1.6	0	-	0.1	-	-	0.005	0.005	0.1	2	0.003	3	0.005	2	0.02	-	- 10	-	10	-	 	1	-
	Field ID Depth Number I BH01 0.9-1M 0.9-1M 852456 BH01 2.5M 2.5M 852456	8.6 9	7 7.5	1.6 1.5	1	-	-	-	-	-	-	- -	-	-	-	-	-	-	-	-		-	-	-	1	-
	Field ID Depth Number 1 BH01 0.9-1M 0.9-1M 852456 BH01 2.5M 2.5M 852456 BH01 3.5M 3.5M 852456	8.6 9 8.3	7 7.5 4.9	1.6 1.5 3.4	1 1 3	- 2.0	- - 100		- 22		- - 30	- - 8.3			- - 47	- - 0.076	- - - 300	- - 0.48	- - 1.5			- - 47	- - 0.08	- 1.5	3.6	- <1
	Field ID Depth Number 1 BH01 0.9-1M 0.9-1M 852456 BH01 2.5M 2.5M 852456 BH01 3.5M 3.5M 852456 BH01 3.5M 3.5M 852456 BH01 5M 5M 852456	8.6 9 8.3 8.6	7 7.5 4.9 7.6	1.6 1.5 3.4 1.0	1 1 3 4	- 2.0 -	- - 100 -	<0.1	- 22 -		- - 30 -	- - 8.3 -			- - 47 -	- - 0.076	- - 300 -	- - 0.48 -	- - 1.5 -	<10		- - 47 -	- - 0.08 -	- 1.5 -		<1
	Field ID Depth Number 1 BH01 0.9-1M 0.9-1M 852456 BH01 2.5M 2.5M 852456 BH01 3.5M 3.5M 852456 BH01 5M 5M 852456 BH01 6.5M 5M 852456	8.6 9 8.3 8.6 6.8	7 7.5 4.9 7.6 2.5	1.6 1.5 3.4 1.0 4.3	1 1 3	- 2.0 - 2.0	- - 100 - 100	- <0.1 <0.1	- 22 - 18	<0.005	- - 30 - 24	- - 8.3 - 6.5	- - - - - - - - - - - - - - -	- <0.003 - <0.003	- - 47 - 46	- - 0.076 - 0.074	- - 300 - -	- - 0.48 - -	- - 1.5 - -	- - <10 - 46		- - 47 - 46	- - 0.08 - 0.07	- 1.5 - 1.5	1 3.6 3.5	- <1 - 3.5
	Field ID Depth Number 1 BH01 0.9-1M 0.9-1M 852456 BH01 2.5M 2.5M 852456 BH01 3.5M 3.5M 852456 BH01 5.5M 5M 852456 BH01 6.5M 6.5M 852456 BH01 8.5M 8.5M 852456	8.6 9 8.3 8.6 6.8 8.6	7 7.5 4.9 7.6 2.5 5.9	1.6 1.5 3.4 1.0 4.3 2.7	1 1 3 4 4 1	- 2.0 - 2.0 -	- - 100 - 100 -	<0.1	- 22 - 18 -	- <0.005 - <0.005	- - 30 - 24 -	- - 8.3 - 6.5 -	- - - - - - -	<0.003 <0.003	- - 47 - 46 -	- - 0.076 - 0.074 -	- - - - - -	- - 0.48 - -	- - 1.5 - - -	- - - - - - -	- - - - 0.02 - -	- - 47 - 46 -	- 0.08 - 0.07 -	- 1.5 - 1.5 -		- <1 - 3.5 -
	Field ID Depth Number 1 BH01 0.9-1M 0.9-1M 852456 BH01 2.5M 2.5M 852456 BH01 3.5M 3.5M 852456 BH01 5.5M 5.5M 852456 BH01 5.5M 5.5M 852456 BH01 6.5M 6.5M 852456 BH01 8.5M 8.5M 852456 BH02 1M 1M 852456	8.6 9 8.3 8.6 6.8 8.6 8.5	7 7.5 4.9 7.6 2.5 5.9 8.1	1.6 1.5 3.4 1.0 4.3 2.7 0.4	1 1 3 4 4 4 1 4	- 2.0 - 2.0 -	- - 100 - 100 - -	<0.1 <0.1	- 22 - 18 -	<0.005 <0.005	- - 30 - 24 - -	- - 8.3 - 6.5 -	- - - - - - - -	<0.003 <0.003	- - 47 - 46 - -	- 0.076 - 0.074 -	- - 300 - - - -	- - 0.48 - - - -	- - 1.5 - - -	- 	- <0.02 - 0.07 -	- - 47 - 46 -	- - 0.08 - 0.07 -	- 1.5 - 1.5 - -	3.5	- <1 - 3.5 -
	Field ID Depth Number 1 BH01 0.9-1M 0.9-1M 852456 BH01 2.5M 2.5M 852456 BH01 3.5M 3.5M 852456 BH01 5M 5M 852456 BH01 6.5M 6.5M 852456 BH01 6.5M 6.5M 852456 BH01 6.5M 6.5M 852456 BH01 8.5M 8.5M 852456 BH02 1M 1M 852456 BH02 2M 2M 852456	8.6 9 8.3 8.6 6.8 8.6 8.5 8.5	7 7.5 4.9 7.6 2.5 5.9 8.1 5.5	1.6 1.5 3.4 1.0 4.3 2.7 0.4 3.0	1 3 4 4 1 4 4 4 4	- 2.0 - 2.0 - - 2.0	- - 100 - 100 - - 100	<0.1 <0.1 <0.1	- 22 - 18 - - 35	- <0.005 - <0.005 -	- - - - 24 - - 26	- - 8.3 - 6.5 - - - 8.1	- - - - - - - - - - - - - - - - - - -	<0.003 <0.003 <0.003	- - 47 - 46 - - - 100	- 0.076 - 0.074 - - 0.16	- - - - - - - - - - - - - - - - - - -	- - 0.48 - - - 0.63	- 1.5 - - - - 2.0		- <0.02 - 0.07 - <0.02	- 47 - 46 - - - 100	- - 0.08 - 0.07 - - 0.16	- 1.5 - 1.5 - - - 1.5	3.5	- <1 - 3.5 - - <1
	Field ID Depth Number 1 BH01 0.9-1M 0.9-1M 852456 BH01 2.5M 2.5M 852456 BH01 3.5M 3.5M 852456 BH01 5M 5M 852456 BH01 6.5M 6.5M 852456 BH01 6.5M 6.5M 852456 BH01 8.5M 8.5M 852456 BH02 1M 1M 852456 BH02 2M 2M 852456 BH02 4M 4M 852456	8.6 9 8.3 8.6 6.8 8.6 8.5 8.5 9.1	7 7.5 4.9 7.6 2.5 5.9 8.1 5.5 2.3	1.6 1.5 3.4 1.0 4.3 2.7 0.4 3.0 6.8	1 1 3 4 4 1 1 4 4 4 4	- 2.0 - 2.0 - 2.0 2.0 2.0	- - 100 - 100 - - 100 100	<0.1 <0.1 <0.1 <0.1	- 22 - 18 - - 35 32	<0.005 <0.005 <0.005 <0.005	- - - - 24 - - - 26 - 30	- - 8.3 - 6.5 - - - 8.1 8.0	- - - - - - - - - - - - - - - - - - -	<0.003 <0.003 <0.003 <0.003 <0.003	- - 47 - 46 - - - 100 340	- 0.076 - 0.074 - - 0.16 0.55	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - 1.5 - - -	- 	- <0.02 - 0.07 -	- - 47 - 46 -	- - 0.08 - 0.07 -	- 1.5 - 1.5 - - 1.5 1.5	3.5	- <1 - 3.5 - - <1 - 12
	Field ID Depth Number 1 BH01 0.9-1M 0.9-1M 852456 BH01 2.5M 2.5M 852456 BH01 3.5M 3.5M 852456 BH01 5M 5M 852456 BH01 6.5M 6.5M 852456 BH01 6.5M 6.5M 852456 BH01 6.5M 6.5M 852456 BH01 8.5M 8.5M 852456 BH02 1M 1M 852456 BH02 2M 2M 852456	8.6 9 8.3 8.6 6.8 8.6 8.5 8.5	7 7.5 4.9 7.6 2.5 5.9 8.1 5.5	1.6 1.5 3.4 1.0 4.3 2.7 0.4 3.0	1 3 4 4 1 4 4 4 4	- 2.0 - 2.0 - - 2.0	- - 100 - 100 - - 100	<0.1 <0.1 <0.1	- 22 - 18 - - 35	- <0.005 - <0.005 -	- - - - 24 - - 26	- - 8.3 - 6.5 - - - 8.1	- - - - - - - - - - - - - - - - - - -	<0.003 <0.003 <0.003	- - 47 - 46 - - - 100	- 0.076 - 0.074 - - 0.16	- - - - - - - - - - - - - - - - - - -	- - 0.48 - - - 0.63	- 1.5 - - - 2.0 1.4	- <10 - 46 - - <10 160	- - - - - - - - - - - - - - - - - - -	- 47 - 46 - - - 100	- - 0.08 - 0.07 - - 0.16	- 1.5 - 1.5 - - - 1.5	3.5	- <1 - 3.5 - - <1

Kooragang Island Billboard Geotechnical and Contamination Assessment

ghd.com

